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Abstract 

In this work, we present a finite element formulation for variably-saturated porous geomaterials 

undergoing' elastoplastic deformations. The deforming body is treated as a multiphase continuum, 

and the governing mass and momentum balance equations are solved in a fully-coupled manner. It 

is well-known, however, that mixed formulations of the type examined here may lead to unstable 

approximations unless the spaces chosen for the pressure and displacement interpolation satisfy 

stringent stability restrictions. Failure to choose a stable pair typically leads to spurious pressure 

oscillations and poor convergence behavior. Unfortunately, many seemingly natural combinations— 

including equal-order interpolation for all field variables—do not satisfy the necessary requirements. 

In this work, we propose a stabilized formulation, based on a minor modification of the variational 

equations, which allows one to circumvent these restrictions and employ equal-order mixed elements. 

Several numerical examples are used to demonstrate the computationally appealing features of this 

alternative formulation. 

The resulting implicit, nonlinear algebraic systems are then solved using an inexact Newton algo

rithm. We discuss methods for solving the linearized systems using memory-efficient iterative solvers, 

both on serial and parallel computing platforms. In order to deal with inherent ill-conditioning, we 

propose a block-structured, multilevel preconditioner that both accelerates the convergence of the 

Krylov solver and exhibits excellent scaling properties as the number of unknowns and number of 

processors increase. 

To demonstrate the effectiveness of these approaches, the analysis framework is applied to model

ing hydrologically-driven slope failure. This analysis is motivated by a recent landslide that occurred 

at a steep experimental catchment (CB1) near Coos Bay, Oregon. Simulations are used to quantify 

the rainfall-induced slope deformation and assess the failure potential. Results of parametric studies 

suggest that for a steep hillside slope underlain by shallow bedrock similar to the CB1 site, failure 

would occur by a multiple slide block mechanism, with progressive failure surfaces forming at the 

bedrock interface and then propagating to the slope surface. A key observation is that significant 

computational resources are required to capture these complex solid/fluid interaction mechanisms at 

sufficient resolution, further justifying the use of the proposed approaches over conventional methods. 

IV 
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1 Introduction 

The focus of this dissertation is the development of efficient numerical methods for modeling variably-

saturated geomaterials. In particular, we examine fully-coupled models that simultaneously capture 

the deformation of the solid matrix and fluid flow through the pore space. In many geotechnical 

and geoscientific applications, it is necessary to model this fluid-structure interaction in order to 

make meaningful predictions. Unfortunately, these multiphysics models are challenging both from 

a theoretical and numerical point of view, and their application in day-to-day practice has been 

extremely limited. The goal of this work is to address some of these challenges. 

This introductory chapter has four basic goals: 

• First, we introduce a few representative applications of fluid-structure interaction, to motivate 

the usefulness of fully-coupled simulations. These applications are chosen from a variety of 

disciplines, though they are biased toward geotechnical and geoscientific applications. 

• Second, we present a grain-scale description of porous media, to highlight some of the mi-

croscale mechanisms we wish to capture in our macroscale (continuum) models. 

• Third, we discuss the basic challenges to developing meaningful numerical models. These 

challenges can loosely be grouped as theoretical, experimental, and computational challenges. 

While this dissertation focuses heavily on numerical methods, theory and experiment obviously 

play a crucial role. 

• Finally, we outline the remainder of the dissertation, so the reader may know what to expect 

in each chapter and understand the unifying themes. 

1.1 Applications 

We now consider a few representative applications of fully-coupled flow and geomechanics. Fluid-

filled porous media appear in many disciplines, however, and so the applicable scope of these models 

is much broader than the applications listed here. 

1.1.1 Civil Engineering 

An understanding of coupled solid-fluid flow behavior is crucial for assessing the safety and service

ability of many geotechnical projects—e.g. foundations, excavations, cuts, embankments, and dams. 

1 



www.manaraa.com

INTRODUCTION | 2 

Table 1.1: Major landslides and debris flows in recent decades 

Year Location Rainfall Observations Lives Lost 

2006 
1999 
1991 
1988 
1987 
1985 

Guinsaugon, Philippines 
Vargas, Venezuela 
Antofagasta, Chile 
Rio de Janeiro, Brazil 
Rio Limon, Venezuela 
Mameyes, Puerto Rico 

2.0 m / 10 days 
0.9 m / 3 days 
Brief torrential rain, peak rate 60 mm/h 
3 weeks of tropical storm conditions 
0.2 m / 5 hours 
0.6 m / 24 hours 

1126 
10,0001>2 

101 
320 
210 
129 

1 Includes losses due to flooding. 
2 Low estimate. Actual losses were difficult to determine due to poor census data. 

Numerical simulations provide a useful tool in the design stage of new projects, as well as for the 

analysis of already completed works. 

Unfortunately, many dramatic geotechnical failures have been attributed to fluid-structure in

teraction. A classic example is the effect of the 1971 San Fernando Earthquake on the lower and 

upper San Fernando Dams. The lower dam experienced a major flow failure, while the upper dam 

experienced significant but limited downstream movement. Given the close proximity of the two 

dams and similar construction materials, the question naturally arises as to what led to the differing 

performance. The investigation by Seed et al. [1973] immediately after the event indicated that 

liquefaction and weakening of the hydraulic fill had occurred in both dams. In the upper dam, 

however, the upstream and downstream shells remained relatively strong, while in the lower dam a 

large part of the embankment near the base of the dam had liquefied and led to flow failure. In this 

context, coupled finite element analyses are useful for understanding the liquefaction mechanisms 

and designing remediation measures—see, e.g., the coupled analysis in [Ming and Li 2003]. 

1.1.2 Landslides and Debris Flows 

Hydrologically-driven slope instability threatens lives and infrastructure worldwide. Table 1.1 pro

vides a representative list of six major events in recent decades [Jibson 1992; Lagmay et al. 2006; 

Martinez 2000; Schuster et al. 2002; USAID 2000; Van Sint Jan and Talloni 1993]. A recent case is 

the 2006 Guinsaugon, Philippines slides: heavy and persistent rainfall over a ten day period triggered 

several slides, killing 1126 people and destroying vital infrastructure. 

Despite decades of extensive slope stability model development, the fundamental controls con

necting the hydrologic and geotechnical processes triggering slope failure are still not well quantified. 

This is evident from the La Conchita landslide of January 10, 2005 in southern California (see Figures 

1.1 and 1.2). The slide occurred without warning in a populated area—yet the site was well-known 

to be susceptible to landsliding from previous events [Jibson 2005]. 

This lack of understanding is partially the result of the simplified physics in current models, with 
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Figure 1.1: Photograph of the 2005 La Conchita landslide (from [Jibson 2005]). 
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Figure 1.2: Rainfall record in the weeks leading up to the La Concita landslide. 

the omission of the effect of partial saturation from slope stability calculations. It is known that 

increasing the degree of saturation decreases the capillary pressure, which in turn weakens the slope. 

Despite the expected significant impact, this interplay between fluid flow, increases in saturation, 

and loss of strength is typically not well-accounted for. 

1.1.3 Fault-zone Processes 

Solid-fluid coupling is of particular interest when studying fault zone processes, and is central to many 

open questions about fault behavior. The presence of fluids might explain why some faults, such 

as the San Andreas, are weaker than expected [Hardebeck and Hauksson 1999; Sleep and Blanpied 

1992]. Increases in pore pressure may tend to weaken faults by reducing the effective normal stress, 

and trigger seismic activity. If the overpressures are too large, however, the fault could experience 

stable, rather than unstable, sliding [Segall and Rice 1995]. Dilatancy or compaction within the 

fault zone will also play a crucial role, as well as the degree to which fluid exchange is allowed to 

occur between the fault and its surroundings. Numerical simulations are especially useful for testing 

hypotheses in these cases since field observation is necessarily limited. 
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1.1.4 Reservoir Engineering 

Reservoir engineering also represents another broad area where coupled geomechanical simulations 

can prove useful. 

Our current energy economy, for example, is vitally dependent on subsurface hydrocarbon reser

voirs. The ability to accurately model the behavior of oil and natural gas therefore has large 

commercial consequences. Coupled simulations can be used to assess the optimal placement and 

orientation of wellbores, both for maximizing fluid recovery and to ensure wellbore stability in the 

prevailing stress field. When callibrated with historical performance data, a numerical model can 

also be used to assess current and future reservoir performance, accounting for compaction drive 

and similar effects. Finally, as a result of deep-water exploration, significant investments have been 

made is seafloor pipelines and infrastructure. This infrastructure is susceptible to submarine land

slides and wave-loading failures. Numerical models therefore provide a useful tool for seafloor hazard 

assessment. 

In the future, a societal priority will be maintaining access to clean drinking water. Therefore, 

the sustainable management of our subsurface aquifers is critically important. Also, as we look 

beyond our current energy mix to a more sustainable model, coupled subsurface simulations can 

prove invaluable. Technologies likes subsurface CO2 sequestration, in-situ coal gasification, and 

enhanced geothermal energy all require detailed understanding of coupled behavior. Many of these 

processes include other couplings as well (e.g. thermal and reactive-transport) and so there are 

significant research needs in the area of efficient numerical methods for multiphysics models. 

1.2 Micromechanics of Porous Media 

In studying the coupled behavior of saturated and unsaturated porous media, it is useful to begin 

with a grain-scale description. Before we start, however, we remark that while an understanding 

of the micromechanical mechanisms is crucial to successful numerical modeling, in this work we are 

ultimately interested in field scale applications. As a result, we will eventually introduce a macroscale 

(continuum) mathematical description of the problem. For the remainder of the dissertation we 

will then work within this continuum framework. While not the focus of this thesis, however, 

micromechanical methods can be tremendously useful in their own right—particularly for estimating 

constitutive properties to be later inserted into continuum-scale models. See, for example, [Fredrich 

et al. 2006; White et al. 2006]. 

Let us consider a typical three-phase medium with solid, water, and air constituents (Figure 1.3). 

The solid, granular phase is packed together to form a structural skeleton, while the fluid and gas 

phases reside in the pore space. As a result of capillary suction in this unsaturated material, the 

wetting phase (water) is drawn into the smaller crevices and pores. In the limit as the pore water fills 

all of the voids-except, perhaps, for some small, irreducible air saturation—we obtain a saturated 

material. In this work we are concerned with soils and rocks exhibiting the entire range from 

irreducible water saturation to irreducible air saturation, and so will generically refer to them as 
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Figure 1.3: Schematic illustration of the microstructure of a three-phase porous medium. 

variably-saturated porous media. We will use this simple, three-phase model to illustrate many of 

the key features we will be concerned with in this work. In our discussion, let us loosely subdivide 

these aspects into solid mechanisms, fluid mechanisms, and fluid-structure interaction mechanisms. 

First, consider the behavior of the porous skeleton in the absence of any pore fluid interaction. 

In this case, the microstructure has a granular composition for which we would like to know the 

stress and deformation characteristics. Consider the behavior of the medium under increasing levels 

of volumetric and deviatoric stress. At low stresses, the structure may have sufficient inter-grain 

contact forces (due to pure friction or some cementation) for the structure to remain intact without 

any inter-grain slip. At larger stresses, however, we expect to observe grain rearrangement as grains 

roll and slide past one another to acommodate increasing stresses and deformations. At very large 

stresses, we may enter a regime where the grains themselves begin to fracture and crush. Note that 

as the microstructural fabric changes, we also have a corresponding change in the pore network 

topology. The macroscale, observed specimen response is likely to be highly nonlinear—particularly 

at large stresses. 

Due to grain rearrangement, the volumetric and deviatoric responses in granular materials are 

strongly coupled. Consider the volumetric behavior of the medium as it is sheared. If the medium 

originally had a loose packing, it will likely compact when sheared, with a corresponding decrease in 

void ratio. If, on the other hand, the original packing was quite dense, then the material may actually 

dilate as grains shift and roll over one another to accommodate the deformation. Furthermore, a 

commonly observed feature of geomaterials is that, regardless of the initial density, under large shear 

strains a steady "critical state" is reached where increasing shear deformations can be accomodated 

at constant volume—i.e. as isochoric response. Figure 1.4 is a schematic illustration of this behavior 

for typical loose and dense granular materials. These basic ideas forms the foundation of Critical 

State Soil Mechanics [Roscoe and Burland 1968; Roscoe et al. 1958; Schofield and Wroth 1968], a 

conceptual framework that has led to the development of many useful material models. 

Even the simple skeleton drawn in Figure 1.3 will show a decidedly complex constitutive be

havior. We should also bear in mind that real porous materials are geometrically more complex 

than our simple drawing suggests. For comparison, the left image in Figure 1.5 is a segmented 
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Figure 1.4: Schematic illustration of the behavior of loose and dense sands when sheared (after 
[Iverson et al. 1997]). 

microtomographic image of the pore-space of a Castlegate sandstone [Fredrich et al. 2006]. Note 

tha t this image is inverted, so tha t voids are opaque and the solid phase is t ransparent . We can 

immediately see the striking topological complexity of real geomaterials, and naturally expect tha t 

they will behave in a highly nonlinear manner. 

Now, consider the behavior of the fluid phases as they flow through the porous skeleton. For this 

discussion, we assume tha t the skeleton remains rigid and undeformable. As a result of gravitational 

and pressure potentials, the fluids will migrate from one region to another. Because of the topological 

complexity of the pore network, however, these flow paths become tremendously complex. The 

right image in Figure 1.5 shows the velocity magnitude of a single-phase fluid flowing through the 

Castlegate pore network. The velocity field was computed using a latt ice-Boltzmann simulation on 

a computational grid mapped directly from the microtomographic da t a set [Fredrich et al. 2006; 

Whi te and Fredrich 2007]. Even a cursory analysis of these flow paths reveals their tortuous nature. 

Furthermore, we observe a few, well-connected, high-flux pathways surrounded by significant regions 

of stagnant fluid. If we consider the possibility of multiple fluid phases in the pore space, then the 

story becomes even more complex as we must account for relative flow behavior of the multiple 

fluids, as well as a host of more sophisticated interaction mechanisms. 

As we have seen, the separate solid and fluid problems are intrinsically challenging. Clearly, 

however, the solid deformation and fluid flow will also have mutual interaction effects. Let us briefly 

describe two of these interaction mechanisms, though there are many more we might consider. 

The first interaction mechanism appears in the form of deformation constraints. As described 

earlier, geomaterials show a complex volumetric response. If the there are fluids in the pore space, 

they will play a role in controlling this dilation and compaction. Consider, for example, a sa turated 

file:///Dense
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Figure 1.5: Segmented microtomographic image of the pore space of Castlegate sandstone [Fredrich 
et al. 2006], and a lattice-Boltzmann simulation of single-phase flow paths through the pore network 
[White and Fredrich 2007]. Note that the figures are not to scale. The microtomographic volume is 
1.416 x 1.416 x 1.503 mm3, while the simulation image is of a 0.668 x 0.688 x 0.688 mm3 subvolume. 

porous soil or rock whose permeability is very low in comparison to the time scale of loading. In 

this case, as the skeleton deforms the pore fluid cannot drain away to other regions. Since the bulk 

modulus of the fluid is typically very large (for water, Kw w 2.2 GPa), the trapped fluid will prevent 

the porous skeleton from undergoing any significant volumetric deformation. Thus, the mixture 

as a whole may act as an incompressible material. The numerical challenge of dealing with this 

constraint is the subject of Chapter 3. 

Second, the presence of either positive or negative pore water pressure has a significant effect 

on the apparent strength of the geomaterials. It is commonly observed, for example, that the shear 

capacity of a specimen increases with effective confining pressure. The simplest model of this effect 

is the Mohr-Coulomb failure criterion, in which the shear capacity is a linear function of confining 

pressure. Now, if significant positive pore water pressure is present, it will tend to relieve the effective 

stress that would otherwise be carried by the solid matrix. It will decrease the effective hydrostatic 

stress in the skeleton, while leaving the deviator stress unaffected. As a result, positive pressure can 

have a destabilizing effect, reducing the intrinsic shear capacity of the material. For soils with little 

to no cohesion, the pore water pressure may even become so large that the soil liquefies—as was the 

case with the lower San Fernando dam. In a similar vein, consider the behavior of an unsaturated 

soil. In this case, there is capillary suction in the pore space due to the presence of both air and 

water phases. This suction will tend to pull grains together, and has a stabilizing effect on the 

porous medium. That is, the material in an unsaturated state exhibits a larger apparent strength 

than in the fully-saturated state. The classic example of this fact is sand-castle building. Completely 

dry or fully-saturated sand is almost useless as a building material, but at moderate saturations the 

sand can be quite strong. These effects will play a central role in Chapter 5. There, we consider 
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rainfall-induced landslides, an application in which loss of strength due to saturation increases can 

have dramatic and sometimes devastating effects. 

In this dissertation we are concerned with modeling field-scale behavior. At this point we will 

therefore move away from our grain-scale description and adopt a macroscale (continuum) perspec

tive. Nevertheless, the previous microscale discussion is useful in two respects. First, it provides 

an important conceptual framework for understanding the macroscale phenomena we would like 

to capture. Second, it illustrates the fundamental challenge of trying to represent very complex 

microscale interactions with macroscale, phenomenological models. 

Finally, we also wish to emphasize that the macroscale/microscale division we have adopted 

here is somewhat artificial. In reality there is a continuum of scales, with physical processes and 

heterogeneities at many levels playing a role in the global system response. Ultimately, the success 

and failure of geomechanical models lies in the ability to capture the important effects at every scale 

in a meaningful (and tractable) manner. 

1.3 Challenges and Research Needs 

We now turn our attention to some of the basic challenges associated with modeling coupled systems. 

To ground the discussion, we introduce the simplest model: a saturated, quasi-static material with 

incompressible solid and fluid constituent phases. In this case, the governing equations are 

V • a' - Vp + pg = 0 (1.1) 

V - M + V - U J = 0 (1.2) 

We will discuss coupled formulations in great detail in Chapter 2, and only introduce the model here 

to fix some ideas. The first equation is a linear momentum balance, relating the effective stress in 

the solid matrix a', the pore water pressure p, and a body force due to the mixture density p. The 

second equation is a mass balance relating the displacement velocity ii and the seepage velocity w. 

This model must be supplemented with suitable initial and boundary conditions, and closed with 

two constitutive relationships. The first relates the seepage velocity to the pressure, for which we 

use a generalized Darcy's law, 

k 
w = - - ( V p - pwg) (1.3) 

V 

Here, we have introduced the intrinsic permeability k (units of m2), the dynamic fluid viscosity JJ 

(units of Pa-s), and the fluid density pw. The second constitutive relation relates the displacement 

u to the effective stress er'. Under a small-strain assumption, most hyperelastic and elastoplastic 

material models can be written in rate form as 

. , . . Vu + V T « . 
a =C:e, e = (1.4) 
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Here, the strain rate e is the symmetric gradient of the displacement velocity it, C is a non-constant 

fourth-order tensor of tangential moduli, and the colon operator : denotes a double contraction. 

In general, this coupled model can only be tackled analytically for simple geometries and material 

models. In most numerical method is required. 

Equations (1.1) and (1.2) can be derived from the continuum theory of mixtures, and provide a 

physics-based rational for modeling coupled geomaterial behavior. There are three important steps 

to go through, however, to get from this mathematical framework to a working model: 

• First, we need numerical methods for solving (1.1) and (1.2). These methods must be both 

accurate and inexpensive. 

• Second, there is a constitutive modeling effort—that is, equations (1.3) and (1.4). The chosen 

models should be predictive, theoretically grounded, and able to be constrained with available 

field data. 

• Finally, there is the application phase, in which one defines the geometry, initial and boundary 

conditions, and other features specific to the given problem. This phase likely also includes 

validation and revision efforts. 

None of these phases is trivial, and demand significant research attention. Furthermore, the con

struction of meaningful numerical models is clearly more than an exercise in numerics: theory and 

experiment play a central (and inescapable) role. Thus, while this thesis is focused on some of the 

numerical challenges associated with coupled problems, we also need to address these other issues. 

This fact will be most apparent in Chapter 5, where we look at a specific application—studying 

hydrologically-driven landslides. 

With respect to designing efficient methods (Step 1) there are three basic challenges that we 

attempt to address in this work. The first challenge is the obvious one: coupled problems are 

simply "larger" because we must simultaneously model multiple physical mechanisms and multiple 

unknown fields. There are other challenges, though, that are more subtle. First, the mixed finite 

element formulations we consider are subject to certain mathematical stability restrictions. These 

restrictions limit the available choice of interpolations one can use and still obtain good, convergent 

approximations. Unfortunately, interpolations that do "work" are often inconvenient and expensive. 

Fortunately, there are methods for circumventing these stability restrictions, and they will be the 

focus of Chapter 3. The second issue is that coupled problems are inherently stiff and ill-conditioned. 

This ill-conditioning derives from the fact that the individual governing equations have widely-

differing magnitudes and mathematical character. The focus of Chapter 4 is the development of 

intelligent solution methods that recognize the coupled nature of the problem and exploit it in the 

solution process. We will then tie these methods together in Chapter 5 to look at a the specific 

application of hydrologically-driven landslides. 
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1.4 Outline 

With this background in mind, the remainder of this dissertation is organized as follows: 

• Chapter 2: Multiphase Mechanics. This chapter introduces a mathematical framework 

for modeling multiphase materials based on continuum theory of mixtures. We discuss the 

general formulation, as well as simplified models that are useful in practice. We also present 

the basics of the numerical discretization using finite elements. 

• Chapter 3: Stabilized FEM. In this chapter we address the inherent stability restrictions 

embedded in mixed finite element formulations of coupled behavior. These restrictions are 

one of the major hurdles to computational efficiency. Standard methods that satisfy these 

restrictions are quite expensive, and limit the size and resolution of coupled models. In this 

work, we propose a "stabilized" finite element method that circumvents these restrictions, and 

allows for the successful use of efficient, low-order elements. We compare the accuracy and 

the performance of the intrinsically-stable and new stabilized methods with several numerical 

examples. 

• Chapter 4: Solution Methods. In this chapter, we explore solution methods for the coupled 

model that address the size, stiffness, and ill-conditioning of coupled systems. We propose a 

block-structured preconditioning approach that speeds the convergence of iterative solvers and 

shows excellent scaling properties as the problem size grows. We also explore improvements to 

the standard Newton iteration that provide additional boosts in performance. When combined 

with the stabilized finite element formulation, we are able to solve three-dimensional, fully-

coupled problems with hundreds of thousands to millions of unknowns on relatively modest 

computational platforms. 

• Chapter 5: Hydrologically-Driven Slope Instability. In this chapter, we apply numerical 

simulations to study hydrologically-driven slope failure. The motivation for this work is the 

rainfall-induced failure that occurred at a steep experimental catchment (CB1) near Coos-

Bay, Oregon, in 1996. Through several numerical examples we quantify the deformation and 

stability of the slope, assess it failure potential, and discuss the kinematics of the likely failure 

mechanisms. Through parametric studies we also try to identify the key uncertainties that 

need to be constrained in future modeling efforts. 

• Chapter 6: Conclusions. At the end, we will identify the unifying themes and key con

tributions of this dissertation, as well as lay out important areas that should be addressed in 

future work. 
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2 Multiphase Mechanics 

This chapter introduces a mathematical framework for modeling multiphase materials based on 

continuum theory of mixtures. We discuss a very general formulation, as well as simplified models 

that are useful in practice. We also present the basics of the numerical discretization using finite 

elements. 

2.1 Conservation Laws 

Consider a representative elementary volume (REV) of a three phase mixture containing solid, water, 

and air. We have chosen these three phases since they are the ones commonly present in geotechnical 

applications. Most of what follows, however, can be readily extended to multiphase mixtures with 

other fluid and gas constituents. 

The total volume of the REV is dv = dvs + dvw + dva . The volume fraction of the 7r-phase 

(IT — s, w, a) is denoted by (p* = dvn / dv, with the restriction 

<PS + 4>w + <pa = 1. (2.1) 

The void fractions for the water and air phases are given by 

^ = 7 ^ a n d V = l-V- (2-2) 
1 — <ps 

Note that the void fraction ipw is also commonly referred to as the the water saturation, and tpa a s 

the air saturation. The intrinsic mass density of each phase is pn, while the averaged (or partial) 

density of the phase within the REV is given by p* = (ff pv. The total mass density of the mixture 

is therefore 

p = (f + pv' + pa. (2.3) 

As a general notation, we will use phase designations in the superscript for average or partial 

quantities, and in the subscript for intrinsic or true quantities. 

11 
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2.1.1 Mass Balance 

For simplicity, we assume that no mass is exchanged between phases. In this case, we can write the 

balance of mass for each phase as 

—f—+ ^ V-vw = 0, ir = s,w,a. (2.4) 
at 

Here, the total derivative d*{o)/dt is reckoned with respect to the motion of the 7r-phase. In practice, 

however, it is convenient to reckon all quantities with respect to the motion of a single phase, typically 

the solid. We can do so using the transformation, 

— p - = —p- + V(o) - v„s, v7rs=v7r-vs, (2.5) 
at at 

where v-„s is the relative velocity of the 7r-phase with respect to the solid. Given the central impor

tance of the solid motion, from now on we drop the superscript on ds{o)/dt and simply write d(o)/dt. 

Similarly, we will refer to vs simply as v, with the connection to the solid implicitly understood. 

With this new notation, we can rewrite the conservation equations as 

^ + p ' V - t ; = 0, (2.6) 

dnn 

-?-+p7VV-v + V-(p*v7rs) = 0, ir = w,a. (2.7) 
at 

We now introduced an equation of state for the density/pressure relation in each phase through 

a barotropic flow assumption: the intrinsic pressure pn = — tr(crw)/3 is a solely a function of the 

density pn and vice versa. In particular, let us introduce a bulk modulus K^ such that 

K^ = p v ^ . (2.8) 
dp-K 

Expanding the total time derivative of the partial density p x , 

dp- _ d(rp.) , 9 Q, 
dT ~ dt [ y j 

(2.10) 

(2.11) 

Inserting this relationship into (2.6) and (2.7), 

f^.t^^ <2I2> 

Pit 

P-K 

dt 
W 
dt 

(<W 
I dt 

,vdPi, 
<t> 

+ 

dp* 
§" 

Kn 

rdp-n 

' dt 

dPn^ 

dt , 
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We now make use of the following identity: 

f = |Wd-«l (2.14) 

Combining equations (2.12), (2.13), and (2.15) leads to an expression for the 7r-phase mass balance 

{•K = w, a) with the solid-phase balance embedded in it, 

( l - ^ + f ^ + ^ l ^ + ^ V . « + J -V.(p"« ) r . ) = 0. (2.16) 
at Kn at Ks at p^ 

We now make use of the following relation for the bulk modulus of the porous skeleton, K, 

-KV-v. (2.17) ,sdps 

^ dt 

See Borja [2006c] for a discussion of this relationship and a derivation of an expression for the 

skeleton modulus based on a thermodynamic analysis. Equation (2.16) can therefore be rewritten 

as 

where we recognize the appearance of the Biot coefficient b — 1 — K/Ks. Our final manipulations 

concern the last term, containing the relative flow vector j>,51 

— V-(p*t;„) = — V-{p^vvs) (2.19) 
Pit P-n 

= —VPn • (0»r;„) + Vi^v^s) (2.20) 

Kv 
Vp*-vWa+Vi<l>"v*3). (2.21) 

We have again made use of the bulk modulus relationship (2.8). The final form for the conservation 

equation, valid for the solid/water or solid/air combination, is 

(1 -4>s)'^r + br V- v + V-(0ww„) + £ . ($JL + V p x • v*.} = 0. (2.22) 

We note that the final term in parenthesis represents the total time derivative dTip^/dt reckoned 

with respect to the solid motion. The term ^ t i T S represents the superficial (Darcy) velocity, which 

for convenience we will denote as ID*. 

To conclude, we recall that this formulation rests on the assumptions of isothermal deformation, 

no mass exchanges between phases, and the existence of bulk moduli Kn and K. Otherwise, the 

formulation remains quite general and can be readily expanded to handle an arbitrary number of 
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compressible components. In some cases, however, an even more general formulation may be desired. 

See, e.g., Gawin et al. [1995] for a formulation that includes thermal effects. 

2.1.2 Phase Compressibility 

In an isothermal system of the type considered here, the bulk modulus of an ideal gas is equal to 

the absolute pressure of the gas. Therefore, if pa is the gauge pressure in the air, then we define the 

bulk modulus for the air as 

Ka=Pa+Patm. (2.23) 

The atmospheric pressure for air at STP conditions is 101.3 kPa. In contrast, the bulk modulus Kw 

for water is 2.2 x 106 kPa and the bulk modulus Ks for sand or clay is typically 0(1O7 — 108) kPa. 

In many engineering cases of interest, reasonable approximations may neglect the intrinsic com

pressibilities of one or more phases. We will come back to this point as we discuss simplified 

formulations. 

2.1.3 Effective Stress Relationship 

The effective stress is that portion of the total stress that controls the stress/strain, volume change, 

and strength behavior of the solid matrix, independently of the magnitude of the fluid pressure 

[Schrefier and Gawin 1996]. In saturated soil mechanics the effective stress is most commonly 

written as 

t/ = cr + bpwl, (2.24) 

where 6 is the Biot coefficient introduced earlier. For many soils it is adequate to assume 6 = 1 

(K/Ks « 0). For saturated rocks and concrete b is typically in the range 0.5-0.9. 

In the unsaturated case, there is a lack of consensus on the best form for the effective stress 

relationship. In this work, we employ the following definition of the effective stress, 

a' = a + bp\ (2.25) 

where p is the phase-averaged pressure of the fluid and gas surrounding the solid grains, 

P = ipwpw + TpaPa- (2.26) 

A convenient feature of this definition is that it naturally reduces to the definition (2.24) in the 

saturated limit, and so no special treatment is needed to handle variably-saturated conditions. 

Borja [Borja 2006c; Borja and Koliji 2009] demonstrated that this expression for the constitu

tive stress tensor is energy-conjugate to the solid rate of deformation. Note that this definition is 

similar to the Bishop stress when 6 = 0 (incompressible solid grains) and ipw is replaced with the 
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experimentally determined Bishop parameter x- We recover the Skempton [Skempton 1961] and 

Nur-Byerlee [Nur and Byerlee 1971] stress when tpw = 1; and the Terzaghi [Terzaghi 1943] stress 

when b = 0 and xf)w = 1. The Bishop parameter x c a n D e determined experimentally, and the sub

stitution of degree of saturation ipw in lieu of this parameter is a simplified approximation derived 

from the volume averaging over a representative elementary volume (REV). 

The pressures are assumed to be relative pressures, measured with respect to atmospheric pres

sure or another suitable reference. We also define the matric suction 

s=pa-pw>0. (2.27) 

As we will see, the suction (also commonly referred to as capillary pressure) is a crucial state variable 

used in the definition of the necessary constitutive relationships. The lower bound follows from the 

fact that the medium is assumed to be fully saturated when pw > pa, and without a fluid/gas 

interface no capillary pressure can exist. 

If the pore-space is well-connected and the formation of interest is at a shallow depth, it is 

frequently assumed that the pore gas pressure is in equilibrium with atmospheric pressure, or pa « 0. 

This assumption leads to a "passive gas" formulation in which the only non-trivial balance equations 

are the linear momentum balance and the conservation law for the fluid phase. This assumption 

also implies a simplified definition of the suction, s = —pw, and effective stress, 

CT' = a + b{ijjwpw)l. (2.28) 

2.1.4 Linear Momen tum Balance 

The local form of the balance of linear momentum for the mixture under quasi-static conditions is 

V(T + pg = 0. (2.29) 

Based on the discussion of the previous section, the momentum balance can be directly written in 

terms of the effective stress a' and the phase-averaged pressure p, 

V-(er' -bpl)+pg = 0. (2.30) 

The multiphase system under consideration has five unknowns—three components of displacement 

and two pressures. The momentum balance provides three governing equations, while the remaining 

two follow from the mass conservation equations. In order to close the model, it is necessary to 

define certain constitutive relationships. These relationships are the subject of the next section. 
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2.2 Constitutive Relations 

In the following sections we discuss the constitutive relationships necessary to complete the definition 

of the multiphase model, as well as present a few representative models. The key observation is that 

the constitutive models are based on two state variables, the effective stress and the matric suction. 

2.2.1 Saturation Relationship 

In this work we will use saturation relationships of the form ip* (s), where s is the suction pressure 

defined earlier. One model commonly employed in hydrology is the van Genuchten [1980] model, 

1pW(s) = </>! + (lb ~ 1>l) i+(fr (2.31) 

The model contains four parameters: tpi is the residual water saturation, ^2 is the maximum water 

saturation, sa is a scaling pressure, and n and m are empirical constants defining the shape of the 

saturation curve. In the original formulation n and m are not independent constants, but are rather 

related to one another as 

m = ^ — ^ . (2.32) 
n 

Using this relationship reduces the number of empirical parameters to three. We remark that while 

the van Genuchten curve is a popular choice, many other models exist. 

2.2.2 Generalized Darcy's Law 

The quantity wv — <f>*vns appearing in the mass balance equations is the superficial velocity of 

the 7r-phase (units of m/s). In this work we use a generalized Darcy's law to relate the superficial 

velocity field to the pressure and elevation potential in each phase, 

k 
w* =-kT„—(Vp-K - pitg). (2.33) 

Here, kn is a second-order tensor defining the saturated intrinsic permeability of the 7r-phase (units 

of m2), TJT, is the fluid viscosity (units of Pas) , and krn is a dimensionless relative conductivity factor 

that accounts for the effect of partial saturations. 

The factor krir is typically taken as a function of the saturation ipw, though it can also be related 

directly to the suction s. From an experimental perspective, the former is often easier to measure 

than the latter. The van Genuchten [1980] model mentioned earlier provides such relationships. 

Defining a scaled saturation 6 as 

, = p * (2.34) 
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the fluid and gas relative permeabilities are given by 

2 
krw{9) = 61/2 1 - ( l - 6 |1 /mJ , (2-35) 

kra(0) = (1 - 0)1/3 (l - el'm\2m . (2.36) 

2.2.3 Elastoplastic Models 

In this work we will use a variety of material models—linear elastic, hyperelastic, and elastoplastic. 

For simplicity of presentation, we will use a small-strain assumption throughout and define the strain 

measure e as the symmetric gradient of the displacement, 

e = SJsu = ]- (Vu + V T M ) (2.37) 

For saturated materials, the effective stress/strain relationship can be written in a general "rate 

form" as 

&' = C : e (2.38) 

where C is a fourth-order tensor of tangential moduli. For unsaturated materials, the story is slightly 

more complicated as some models include an explicit dependence of the stress on the suction s as 

well. See, for example, the Critical State Model proposed by Borja [2004]. For this case we need a 

more general relationship 

&'=C:e + Bs ' (2.39) 

where ED is a second-order tensor of tangential moduli. These general relationships are sufficient to 

formulate the problem, and so we will not narrow the discussion at this point to a specific material 

model. We will instead introduce models as necessary to describe specific applications. 

2.3 Simplified Forms 

The triphasic model just introduced is quite general, and can be extended to accomodate an arbitrary 

number of compressible constituent phases. In practice, however, simplifying assumptions can often 

be made. In this section we consider a few of these simplified forms. 

In many "near-surface" applications it is reasonable to make the passive gas assumption introduce 

earlier, pa = 0. This assumption eliminates the need for the air mass balance equation, and reduces 

to number of governing equations to two. To compare these formulations, we consider the one-

dimensional drainage experiments by Liakopoulos [1964]. In the experiment, a column of sand was 

fed with water from a reservoir at the top and allowed to freely drain through the bottom. Once the 

sand was saturated and the pore water pressure in the column was approximately atmospheric (free 
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Figure 2.1: Comparison of two- and three-phase formulations with experimental data by Liakopoulos 
[1964]. 

drainage), the inlet at the top was closed. The column was then allowed to drain from a saturated 

to a final unsaturated state. Figure (2.1) presents experimental measurements of the fluid velocity 

at the lower outlet filter, along with simulations of this experiment using both a three-phase and 

the simpler two-phase models. We see that for this case, both approximations work quite well. The 

simpler two-phase model tends to underestimate the time to steady-state, but otherwise provides a 

reasonable approximation. 

In many applications, it is often reasonable to ignore certain phase compressibilities. For example, 

at low confining stresses such as those encountered in geotechnical applications, it is reasonable to 

assume the that bulk modulus of the water and solid phases are essentially infinite. Note that we 

still assume that the solid skeleton modulus is finite, but that the Biot coefficient 6 = 1. Along with 

the passive gas assumption, this leads to the simpler formulation, 

V-{a' -ipwpwl) + pg = 0 (2.40) 

( l - 0 * ) - J - - H r V - « + V-ti> = O (2.41) 

In this limit of full saturation (ipw = 1), this model reduces to the even simpler form, 

V-(<r' -pwl)+pg = 0 

V - u + V -w = 0 

(2.42) 

(2.43) 

Since these last two models are conveniently simple but are also very useful in practice, we will tend 

to focus on them in later chapters. It should be apparent, however, that much of what is said here 
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can be straightforwardly extended to the more general formulation when the additional physics is 

necessary. 

2.4 Limiting Forms 

An interesting feature of the coupled model is that it simplifies to other well known mathematical 

formulations under certain limiting assumptions. For example, consider the undrained limit as the 

permeability k —> 0. If we assume a linear elastic material model (parameterized by the Lame 

parameters A and /i), the resulting set of governing equations can be rewritten as 

2fi V • e(u) -Vp = f (2.44) 

V • u = 0 (2.45) 

These are the well-known Stokes equations. This model can be used to represent the behavior of 

an incompressible elastic solid. With a suitable reinterpretation of the variables, the Stokes model 

also describes the behavior of slow, viscosity-dominated fluid flows. For this case, u represents the 

velocity field (rather than displacements) and /j is the viscosity (rather than the shear modulus). 

Now consider the other limiting case of the coupled model: the limit as the solid matrix becomes 

rigid. In this case, the governing equations reduce to the Darcy flow equations, 

k 
W+-Vp = f (2.46) 

V • w = 0 (2.47) 

An important feature to recognize in both the Stokes and Darcy models is that the second equation in 

each is a constraint equation. In the first case, there is a divergence constraint on the displacement 

field (no volumetric deformation) and in the second case there is a divergence constraint on the 

seepage velocity (solendoidal flow). As we briefly mentioned in the introduction, the coupled model 

is subject to certain stability restrictions. These restrictions stem from the constrained nature of 

the problem in certain limit states. We will discuss these issues extensively in the next chapter. 

2.5 Weak Forms 

We have presented the governing model in strong (differential) form. In the context of the finite 

element method, however, we transform the strong statement to a weak (integral) statement. In 

this section, we present this weak integral statement. To avoid a proliferation of terms, we will use 

the simplest, saturated model given by (2.42) and (2.43). For convenience, we will therefore drop 

the subscript w and write the water pressure simply as p. We will retain the subscript only in those 

cases where the phase designation is ambiguous. 

The mixture occupies a domain Q, with boundary T. This boundary is suitably decomposed into 



www.manaraa.com

MULTIPHASE MECHANICS | 20 

regions where boundary conditions are specified for both the solid and fluid. In particular, we define 

r„ 

r0 

solid displacement boundary (2.48) 

solid traction boundary (2.49) 

fluid pressure boundary (2.50) 

fluid flux boundary (2.51) 

with the restrictions 

r = r u ur t = r p ur„ (2.52) 

r u nr ( = r p nr , = 0. (2.53) 

The boundary conditions are given as 

u = u on Tu (specified displacement), (2.54) 

n • a' = t onTj (specified traction), (2.55) 

p = p on r p (specified pressure), (2.56) 

—n • w = q o n T , (specified flux). (2.57) 

Finally, initial conditions at t = 0 are given as {u0,p0}. 

In performing the transformation from strong to weak, we are immediately presented with a 

choice: which variables to choose as our primary unknowns. In this work we will rely upon a 

two-field formulation in which the displacement and the water pressure are the primary variables. 

This leads to a so-called u/p formulation. In this case the mass and momentum balance equations 

are written in weak form to furnish two governing equations. Another option that is slightly more 

complicated, but also has nice approximation properties, is a three-field (u/p/w) approach. 

For the two-field discretization, two spaces of trial functions are defined as 

W = { t t : f i ^ R 3 | « e H 1 , u = 5 o n r B } , (2.58) 

V={p:n->R\p€H1,p = pzonrp}, (2.59) 

where H1 denotes a Sobolev space of degree one. We also define the corresponding spaces of weighting 

functions, with homogeneous conditions on the essential boundaries, 

U0 = {rj-M^Wi \r]eHl,T] = 0onru}, (2.60) 

V0 = { 0 : Q - ^ M | <t>e H1, <f> = 0onrp}. (2.61) 
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The weak form of the problem is then to find {u,p} e U x ? such that for all {rj, </>} G U0 x V0, 

Kmom. = f VST] • cr' dQ~ f pV • r) dQ.- [ rj • pg d O - f r? • I dT = 0 (2.62) 
i n i n i n Jr 

= - [ 4>V-udQ+ f V<f>-wdQ+ [ 4>^dT = 0 (2.63) 
Jn i n Jr 

1l„ 

2.6 Numerical Discretization 

With the weak form in hand, the construction of the numerical model follows the standard finite 

element recipe. For the spatial discretization, we introduce discrete interpolation spaces to represent 

uh and ph. Since the second equation is time-dependent, we use a finite-difference method (implicit 

Euler update or Crank-Nicolson) for the temporal discretization. Since these manipulations are 

standard, for the sake of brevity we will not report them here and refer the interested reader to 

[White and Borja 2008]. 

The most important point is that this discretization eventually leads to a vector of nonlinear 

residual equations R(x) = 0 that must be solved in each time step to advance the time-dependent 

solution x(t). The solution vector has length nu + np, where nu is the number of displacement 

degrees of freedom, and np is the number of pressure degrees of freedom. It can be partitioned into 

u and p blocks as 

(2.64) 

The residual vector R can also be partitioned into two blocks, an nu block representing the discrete 

momentum balance, and a np block representing the discrete mass balance, 

R(x) 
R mass 

(2.65) 

Since the equations are nonlinear (in this case due to the nonlinear constitutive behavior of cr') we 

use a Newton iteration to drive them to zero. That is, at the kth iteration, given a current guess 

at the solution Xk = (wfe,Pfc), we build a linear approximation to the nonlinear residual about the 

current configuration, 

R(x) w R(xk) + JkAx = 0 (2.66) 

where Jk = [dR/dx] is the (nu + np) x (nu + np) Jacobian of the system, evaluated at the current 

configuration xk- This implies an update scheme in which we solve the linear system, 

JfcAx = -R(xk) (2.67) 

for the update increment Ax = (Ait, Ap), and set xk+i = xk + Ax. Since the residual vector has a 
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2 blocks, the Jacobian system has a 2 x 2 block structure, 

A Bi 

B2 C 
k 

AM 

Ap 

where the A block is nu x nu and the C block is np x np. Because the pressure is a scalar field, 

while the displacement is a vector field with as many components as there are spatial dimensions, 

the dimensions of the A block will typically be much larger than those of the C block. The A block 

contains coefficients that couple displacement degrees of freedom to displacement degrees of freedom 

{u/u), the C block couples pressure degrees of freedom to pressure degrees of freedom (p/p), and 

the off-diagonal blocks £?i and Bi govern the interaction of displacements with pressures (u/p) and 

vice-versa (p/u). Efficient methods for solving block-structured systems of this type are the focus 

of Chapter 4. 

2.7 Conclusion 

In this chapter, we have presented a very general formulation for modeling multiphase mixtures 

using a physics-based approach. We have shown how the general formulations reduces to a variety 

of simpler models commonly used in practice. We have presented both the strong and weak forms 

of the problem, and discussed the block structure of the resulting algebraic problems that must be 

solved in the context of a nonlinear Newton iteration. 

In the next few chapters we consider some of the difficult numerical issues associated with solving 

these equations. 

R„ 
(2.68) 
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3 Stabilized F E M 

The key results of this chapter were originally published in J.A. White and R.I. Borja (2008), 

"Stabilized low-order finite elements for coupled solid-deformation/fluid-diffusion and their ap

plication to fault zone transients", Corap. Meth. Appl. Mech. Eng., 197(49-50) :4353~4366. 

Additional material is presented therein and we refer the interested reader to this work. 

As we have seen, in many applications it is necessary to build a fully-coupled model of solid de

formation and fluid flow. Finite element simulations provide a natural tool for investigating such 

processes. To do so, we employ a mixed formulation to solve for the solid displacements (u) and fluid 

pressures (p). In comparison to pure displacement formulations, however, mixed schemes creates 

additional challenges for the numerical analyst. 

For example, consider the use of a mixed u/p formulation to solve for the displacements and 

pressures in a saturated soil. In the limit of low permeability or fast loading rates, the pore fluid 

can impose near or exact incompressibility on the deformation of the solid matrix. Since the fluid 

itself has a large bulk modulus (for water, K sa 2 GPa) , it prevents the locally-undrained mixture 

from undergoing any volumetric deformation. In the presence of such incompressibility constraints, 

it is well known tha t only certain combinations of discrete spaces for the pressure and displacement 

interpolation exhibit stable behavior. Failure to choose a stable pair can lead to poor results, typically 

in the form of spurious oscillations in the pressure field and sub-optimal convergence behavior. The 

same restrictions are found in many other constrained problems. Classic examples include mixed 

finite element formulations for Stokes flow, Darcy flow, and incompressible elasticity. Recall t ha t 

these simpler, linear models can be recovered under certain limiting assumptions from the current 

coupled formulation. Therefore, as we approach these limits we must address the same stability 

restrictions. 

The mathematical theory establishing the solvability and stability characteristics of mixed formu

lations is well-developed. The key ingredients are an ellipticity requirement and the Ladyzhenskaya-

Babuska-Brezzi (LBB) condition [Arnold 1990; Brezzi 1990]. Unfortunately, many seemingly nat

ural interpolation pairs—including equal-order interpolation for all field variables—do not satisfy 

the necessary stability requirements. In practice, most analysts rely on "safe" elements such as the 

Taylor-Hood family, in which the displacement interpolation is one-order higher than the pressure 

interpolation. A variety of more sophisticated stable elements are also available, e.g. [Arnold et al. 

1984]. 

An illustration of spurious pressure behavior is given in Figure 3.1. We have modeled a very 

low permeability soil mass subject to a surface traction (representing a square footing load) using 

23 
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Figure 3.1: Predicted pressure field for the undrained footing problem using (left) unstable Q1Q1 
elements and (right) intrinsically-stable Q2Q1 elements. The pressure solution for the Q1Q1 pair is 
ruined by spurious pressure oscillations. 

two different interpolation pairs. In the left figure, equal order linear interpolation is used for both 

u and p (Q1Q1 elements) which is known to be an intrinsically unstable pair. In the right figure, 

an intrinsically stable pair is used (Taylor-Hood Q2Q1 elements). The spurious oscilliations in the 

left figure are clearly visible, while the right solution displays a smooth pressure field. Upon mesh 

refinement, the stable model displays convergent behavior, while in the unstable model spurious 

oscillations persist. 

While stable combinations exist, they are often expensive to use. From an implementation point 

of view it would be appealing to circumvent the stability restrictions and employ a broader class of 

interpolation pairs. Over the years, many "stabilization" techniques have been proposed for doing 

precisely this, most extensively in the fluid dynamics community. The model equations used to study 

these schemes are typically the Stokes or Darcy equations, which despite their simplicity contain all 

of the salient features of a constrained problem. We mention the early Brezzi-Pitkaranta scheme 

[Brezzi and Pitkaranta 1984], the Galerkin Least-Squares (GLS) approach of Hughes et al. [Hughes 

et al. 1986], and the more recent Variational Multiscale Methods [Hughes et al. 1998]—but many 

others exist. See, for example, [Dohrmann and Bochev 2004; Douglas and Wang 1989; Masud and 

Hughes 2002]. In solid mechanics, a variety of schemes have also been developed for incompressible 

and quasi-incompressible elasticity in order to overcome volumetric locking associated with pure-

displacement formulations. For example, in [Onate et al. 2004], Onate and co-workers proposed a 

formulation based on the concept of Finite Calculus. Masud and Xia in [Masud and Xia 2005, 2006] 

developed a formulation for both linear and nonlinear constitutive models based on a Variational 

Multiscale approach . Romero and Bischoff have recently proposed an interesting method for linear 

elasticity which involves enriching the finite element spaces with incompatible bubble functions 

[Romero and Bischoff 2007]. Of course, the above schemes are merely a representative sample of an 

extensive literature that has developed for each class of problems. 

While it is difficult to classify all stabilization schemes in a unified framework, most frequently 
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the methods lead to a modified variational formulation in which additional terms are added to the 

mass balance equation, modifying the incompressibility constraint in such a way that stability of 

the mixed formulation is increased while maintaining a convergent method. In this way, meaningful 

results can be obtained when using otherwise unstable elements. The goal of this contribution is 

to extend the stabilization concept to coupled solid-deformation/fluid-diffusion problems. While 

stabilized methods are employed frequently in fluid and solid mechanics problems, their use in cou

pled geomechanical problems is limited. Nevertheless, some good work in this direction has begun. 

In [Wan 2002], Wan used the GLS approach to stabilize both a displacement-pressure (u/p) and a 

displacement-pressure-velocity (u/p/w) formulation. In [Truty 2001; Truty and Zimmermann 2006], 

Truty and Zimmerman compared three schemes: one based on the Brezzi-Pitkaranta stabilization 

and two based on the GLS approach. They also extended their formulation to account for partial 

saturations. In [Pastor et al. 2000, 1999], Pastor et al. proposed a stabilization scheme for dynamic 

problems using a fractional-step algorithm, incorporating the stabilization into the time-stepping 

scheme. In each case, the authors demonstrated that the stabilizations can successfully suppress 

instabilities and lead to good-quality solutions. Of course, each scheme has its own shortcomings. 

For example, the GLS method is based on adding the residual of the strong form of the governing 

equations. As such, second-order derivatives with respect to the displacements appear, and when 

using linear interpolation, these terms either vanish or are poorly approximated. A special technique 

must generally be employed to improve the accuracy of these calculations, introducing additional 

computational work. See [Wan 2002], for example, where Wan develops such a stress recovery tech

nique. The GLS formulations also often lead to a non-symmetric modification of the system matrix. 

While this makes little difference if the original problem is non-symmetric, it would be appealing 

to preserve any symmetry if it does exist. Indeed, a key advantage of the methods of [Masud 

and Xia 2005, 2006; Romero and Bischoff 2007] is their symmetry-preserving property, but these 

schemes have only been employed for incompressible solids and have not been extended to coupled 

solid/fluid formulations. The Brezzi-Pitkaranta scheme does lead to a symmetric modification and 

can be cheaply implemented for equal-order linear interpolations. Unfortunately, the formulation 

cannot be extended to stabilize other unstable pairs such as linear-displacement/constant-pressure 

elements. The fractional-step method is primarily designed for dynamic problems, and may not be 

an efficient approach for quasi-static models. It also leads to a conditionally stable time-integration 

scheme even if the underlying algorithm is implicit, though recent improvements by the authors have 

significantly improved the stability restriction [Li et al. 2003]. 

In this chapter, we introduce a new stabilization scheme for coupled geomechanical problems 

based on the concept of Polynomial-Pressure-Projections. In this approach, the additional stabilizing 

terms use element-local projections of the pressure field to counteract the inherent instabilities in 

the chosen interpolation pair. The technique was recently proposed by Dohrmann, Bochev, and 

Gunzburger, and has been successfully employed for stabilizing the Stokes problem [Bochev et al. 

2006; Dohrmann and Bochev 2004] and Darcy problem [Bochev and Dohrmann 2006]. An analysis 

of similar pressure projection methods, and a unifying framework for their analysis, has also been 

proposed by Burman [Burman 2007]. 
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Q2Q1 Element 

Q1Q1 Element 

\ y ^ • Displacement d.o.f. 
® O Pressure d.o.f. 

Figure 3.2: Q2Q1 and Q1Q1 mixed quadrilateral elements, showing the support points for displace
ment and pressure degrees of freedom. 

In this work we employ pressure projections to address instabilities that arise in the geomechanical 

problems under consideration. The new stabilization has several appealing features. In particular, 

the additional stabilizing terms can be assembled locally on each element using standard shape 

function information, and no specialized subroutines are required. The scheme does not require the 

calculation of higher-order derivatives or special stress-recovery techniques. The method introduces 

minimal additional computational work, and can be readily implemented in a standard finite element 

code. The scheme also leads to a symmetric modification of the system matrix, preserving any 

symmetry that was inherent in the original variational formulation. The resulting method thus 

shares many of the positive features of the Brezzi-Pitkaranta stabilization, but can be used to 

stabilize a broader class of unstable pairs. 

The primary motivation for using stabilization is computational efficiency. As an example, con

sider two meshes composed of an equal number of two-dimensional, quadrilateral elements. The 

first mesh employs continuous quadratic-displacement/linear-pressure interpolation (Q2Q1), while 

the second uses linear-displacement/linear-pressure interpolation (QlQl). Both elements are illus

trated in Figure 3.2. The first element possesses 22 degrees of freedom and is known to be stable, 

while the second element has 12 degrees of freedom and is known to be unstable—unless a stabilized 

formulation is employed. The two elements are comparable in the sense that they produce the same 

order of pressure interpolation. The Q2Q1, however, leads to algebraic problems with many more 

degrees of freedom. As the number of elements in each mesh grows, a simple argument shows that 

the total number of unknowns in the two meshes quickly approachs a ratio of 3:1. If we consider the 

equivalent three-dimensional situation with hexahedral elements, this limit ratio is 6 | : 1 . Referring 

to Figure 3.1 as a typical example, the QlQl mesh on the left contains 19,652 degrees of freedom, 
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while the Q2Q1 mesh on the right has 112,724 degrees of freedom. Since both meshes exhibit the 

same convergence behavior for the pressure solution, it seems preferable to use the much cheaper 

Q1Q1 interpolation. 

Further computational savings can also be associated with the quadrature rule employed. The 

Q2Q1 element typically requires 3 x 3 Gauss-quadrature in order to accurately integrate the quadratic 

displacement field. In the Q1Q1 mesh, we only need 2 x 2 quadrature. If we consider an elastoplastic 

material in which a significant level of computation must be performed in the material subroutine at 

each Gauss point, the lower-order quadrature rule will lead to additional efficiency. The equal-order 

element can also somewhat simplify the code implementation, particularly when employing adaptive 

mesh refinement or a parallel decomposition of the domain. Finally we note that the introduction 

of stabilization terms can often improve the convergence behavior of iterative solvers. For extremely 

large problems, the memory-efficiency of iterative solvers makes them a more attractive choice than 

sparse direct solvers. We will come back to schemes for solving large linear systems arising from 

mixed formulations in Chapter 4. 

The rest of this chapter is organized as follows. First, we briefly review the origins of instability 

in mixed formulations, and the necessary conditions for stability. Next, we present a stabilizing 

modification to the standard u/p formulation that allows us to circumvent these restrictions. In 

particular, we will see how we can successfully use the appealing equal-order QlQl interpolation. 

We then demonstrate the performance of the new scheme on several numerical examples. We 

start with the classic model equations of Stokes flow and Darcy flow, and then examine coupled 

flow/deformation applications. The examples are mostly motivated by geotechnical applications. In 

all cases we compare the performance of a reference stable element (Q2Q1), an unstable element 

(QlQl), and the same unstable element with stabilization (denoted QlQls) . For completeness, we 

also attempt to highlight certain situations where the stabilization scheme must be employed with 

caution. 

The primary focus of this chapter is on stabilizing the mixed u/p formulation—the most common 

formulation used in geotechnical practice. At several points, however, we will attempt to draw 

connections with u/p/w formulations, which provide an interesting counterpoint. We also confine 

ourselves in this chapter to discussing fully-saturated applications, as these are the most critical 

with respect to instability issues. It is straightforward to apply the proposed scheme to unsaturated 

models as well, as demonstrated in later chapters. At the end we will conclude with a discussion of 

issues to be addressed and future avenues of research with respect to stabilized methods. 

3.1 Stabilized Formulation 

The goal in this section is to develop a stabilized formulation that allows for the successful use of 

QlQl elements in coupled deformation-diffusion problems. We first begin with a few preliminary 

observations, and then present a stabilized formulation based on the Polynomial-Pressure-Projection 

technique. 

Recall that in each Newton iteration k of each time step we need to solve block-structured linear 
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systems of the form 

'A B 

BT C 
k 

AM 

Ap 
= 

" m o r a . 

-^mass 
(3.1) 

For the saturated model the system is block-symmetric. The C block contains coefficients coupling 

pressure degrees of freedom to other pressure degrees of freedom, and is a function of the permeability 

k. In the undrained limit, as k —> 0, C —> 0, leading to a linear system of the form 

'A B 

BT 0 
fe 

Au 

Ap 
= 

^ m o m . 

-*wnass 
(3.2) 

Although (3.2) can be thought of as a single problem, it is helpful rather to think of it as a series 

of algebraic problems parameterized by the element diameter h. The goal is to ensure tha t the 

approximate solution converges to the exact solution at optimal convergence rates as h —> 0. 

Algebraic matrices in this form, with a zero (2,2) block, are common in mixed finite element 

formulations. In order for this system to display stable, convergent behavior, it is necessary for the 

spaces S£ and Si1 chosen for the displacement and pressure interpolation to satisfy the discrete LBB 

condition [Brezzi 1990], 

sup 
h aq

hV -vh dQ. , , „ 
° > c | 9 h | | o 

ll^lli 
Vg" e S$, (3.3) 

with constant c > 0 independent of h. Unfortunately, the spaces S% and Si1 associated with linear-

pressure/linear-displacement interpolations do not satisfy this condition and lead to unstable approx

imations. In [Bochev et al. 2006], however, the authors proved tha t this pair does satisfy a weaker 

condition. Consider a projection operator II : I/2(^) —> -Ro, where RQ is the space of piecewise 

constants. The authors showed tha t the discrete spaces S^ and S^ satisfy 

sup 
vhesh 

JQ qhW • Vh dCl 

Kill 
> C i | | ^ | | o - c 2 | | g " - n g f t | | o VqheS* (3.4) 

with C\ > 0 and C2 > 0 independent of h. Comparing this result with the discrete LBB condition, 

we see tha t the term C2\\qh — Hqk\\o quantifies the inherent deficiency in the Q1Q1 pair. The 

stabilization methodology is therefore to add stabilizing terms to the variational equations to penalize 

this deficiency. Schemes for the Stokes equations and Darcy equations can be found in [Bochev and 

Dohrmann 2006; Dohrmann and Bochev 2004]. We now take the same approach for the coupled 

deformation-diffusion problems under consideration. We first need to define a projection operator 

with a suitable range—that of piecewise constants. Therefore, let 

Iiph 

ne 
- f Ph 
VeJne 

dfi. (3.5) 
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Here, Ve is the volume of the element. The value of the projected field within each element is simply 

equal to the element average of ph. We then modify the discrete variational equation for the balance 

of mass, Hh = 0, to include an additional term, 

n h _ ^ s t a b = 0> ^ s t a b = j J l ^ f c _ Ui)h)(ph - Uph) dfl. (3 .6) 

Jo. 2M 

where the superposed dot denotes a time derivative. The temporally-discrete version is 

W » + i = / w-^rA^h~^h)(ph
n+1-Uph

n+1-p
h
n + nP

h
n)dQ. (3.7) 

Here, fj, is the shear modulus and r > 0 is a constant multiplier. Typically this parameter is 0(1), 

but it can be used to "tune" the level of stabilization. We note that stabilization terms has a diffusive 

effect, and choosing a large r will tend to smooth sharp gradients if they are present in the solution. 

There is thus a balance between choosing r large enough to provide stability while not choosing it 

so large that the solution becomes overly diffusive. In most practical applications, however, we have 

not found this balance to be difficult to achieve. 

In equation (3.7) the shear modulus appears as a coefficient on the stabilizing term. In many 

hyperelastic and elastoplastic models, including those examined in this work, the shear modulus is 

a function of the current state of stress and will therefore evolve with the configuration. To be fully 

consistent in such cases, we evaluate 

P-n+9 = 0 /Wl + (1 - Q)f*n- (3-8) 

where 9 is the time-integration weighting parameter. The linearization of the stabilizing term about 

an intermediate configuration (uk,Pk) is taken as 

AWfb = J 2^A*(^h ~ n^)[Arf - n(Ap£)] dfl. (3.9) 

We note that additional terms associated with the linearization of the coefficient 1//Zfc have been 

omitted. Unless the modulus changes dramatically over an increment, these additional contributions 

are minor and can be ignored without losing quadratic convergence behavior in the global Newton 

iterations. 

The additional quantities associated with the stabilization scheme can be readily assembled into 

the matrix problem using standard shape function information. Noting that II(iph) = n(Npc) = 

n(iVp)c, the stabilized version of equation (3.1) becomes 

'A B 

BT C-M 

AM 

Ap 
R„ 

•rnass 
(3.10) 
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where the two stabilizing terms are given by 

H = / ^— [N? - n(N")] [ # + 1 - nP
h

n+1 - P
h

n + nP
h

n] <m, (3.11) 

M= f —^— [iVp - n(ATp)] [Np - U(NP)] dQ. (3.12) 

We see that the result of the scheme is to introduce a stabilizing sub-matrix into the (2,2) position, 

eliminating the zero-block that would otherwise appear in the incompressible case. Because the 

stabilization is based on the original shape functions, however, the sparsity pattern of this block 

remains unchanged and no fill-in occurs. Also note that modifications are only made to the pressure-

pressure coupling block—the other sub-matrices remain unchanged. This is a key contrast with 

stabilization schemes based on adding residual equations to the variational form, e.g. [Truty 2001; 

Truty and Zimmermann 2006; Wan 2002], where other sub-matrices are modified as well. Finally, 

unlike subgrid scale methods, the stabilization does not require additional basis functions or element 

level condensation. 

3.2 Numerical Examples 

We now present a few numerical examples to test the performance of the stabilization technique. 

The examples were implemented using the DEAL.II Finite Element Library—a collaborative, open 

source project focused on developing a toolbox of common algorithms and data structures for use 

in object-oriented finite element codes [Bangerth et al. 2007]. For the linear solvers, we use several 

components from the TRILINOS Project—a growing collection of algorithms and technologies for 

solving large-scale scientific and engineering problems on serial and parallel computing platforms 

[Heroux et al. 2005]. Note that the main focus of Chapter 4 is efficient solution techniques for 

block-structured linear systems of the type encountered here. We therefore postpone the discussion 

of the particular solution methodology until then. 

3.2.1 Stokes Flow 

The most important requirement of any stabilization scheme is that it displays good convergence 

properties. As a first test of the performance of the stabilization method, we consider the Stokes 

equations, 

2fiV-e(u)-Vp = f (3.13) 

V • u = 0 (3.14) 

As already mentioned, the nonlinear poroplastic model reduces to Stokes equations in the linear 

elastic and undrained limit (k —+ 0). With a suitable reinterpretation of the variables, the Stokes 
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Figure 3.3: Pressure (left) and velocity (right) for the Stokes and Darcy examples. 

model describes the behavior of slow, viscosity-dominated fluid flows. For this case, u represents the 

velocity field (rather than displacements) and /x is the viscosity (rather than the shear modulus). In 

weak form, we seek (u,p) such that for all (r),<p) 

(e(r,),2fie(u))-(V-ri,P) 

fa,V-u) 
= (,n,f)-(n-r},p)r 

= 0 

(3.15) 

(3.16) 

For this model, u £ H1 and p € L^- The requirements on the pressure space have been relaxed 

since, in the undrained limit, the derivatives on the pressure variable disappear. Thus, it is possible 

to use finite element spaces with discontinuous pressures, though we continue to examine continuous 

pressure elements in the following. 

Due to the simplicity of the Stokes equations, it is easy to construct analytical solutions with 

which which we can test our numerical model. For example, consider a unit square fi = [0,2ir] x [0,2ir] 

in which the pressure and velocity fields are (somewhat arbitrarily) chosen as 

sin(x) cos(y) + c 

— cos(:r) sin(y) 

— sin(x) sin(j/) 

(3.17) 

where c is a constant (Figure 3.3). Clearly the velocity field satisfies the divergence constraint V u. 

Plugging these (u,p) fields into the left-hand side of the momentum equation (3.13), we can compute 

the body force / that leads to this solution. In the finite element discretization, this body force is 

applied along with Dirichlet boundary conditions on the normal components of the velocity field. 

Since the pressure is only determined to an arbitrary constant, the mean value pressure is subtracted 

from the solution so that c = 0. 

Table 3.1 illustrates the behavior of the i>2-error in the pressure and velocity solutions using 

both the stabilized QlQls element and the LBB-stable Q2Q1 element. We see that both elements 

converge at order k = I + 1, where I is the interpolation order. For the Q2Q1 element, k = 3 for 
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Table 3.1: Comparison of observed convergence behavior in the Stokes example for the stabilized 
QlQls (with r = 0.001) and LBB-stable Q2Q1. (Top) L2 pressure error and estimated convergence 
order. (Bottom) L2 velocity error and estimated convergence order. 

Mesh 

4x4 
8x8 

16x16 
32 x32 
64 x64 

Q2Q1 

IM! k 

5.33X10"1 -
l . lOxHT 1 2.28 
2.60xl0"2 2.08 
6.41 x l ( T 3 2.02 
I.6OXIO-3 2.00 

QlQls 
||ep | | k 

5.83X10"1 -
l . lOxlO-1 2.40 
2.60xl0~2 2.09 
6.41X10-3 2.02 
1.60xl0"3 2.01 

Mesh 

4x4 
8x8 

16x16 
32 x32 
64 x64 

Q2Q1 

Kll 

1.77X10"1 

1.82xl0 - 2 

2.21xl0~3 

2.74xl0~4 

3.42xl0~5 

k 

3.28 
3.04 
3.01 
3.00 

QlQls 

IM 

1.37x10° 
3.65X10-1 

9.25xl0"2 

2.32xl0"2 

5.81 xlO"3 

k 

1.91 
1.98 
1.99 
2.00 

the velocity field and k = 2 for the pressure field. For the Q l Q l s element k = 2 for bo th fields. For 

this example then, both the LBB-stable and stabilized element show optimal convergence behavior. 

The Q1Q1 element without stabilization fails to converge. 

3.2.2 Darcy Flow 

We now consider the other limiting case of the coupled model: the limit as the solid matr ix becomes 

rigid. In this case, the governing equations reduce to the Darcy flow equations, 

k 
w+ -Vp = f 

V w = 0 

(3.18) 

(3.19) 

Assuming tha t the permeability tensor k is invertible, we may solve the equations in mixed weak 

form as 

(V, 

- 1 

w)-(V-V,p) = ( » 7 > / ) - ( " • » ? , P)r 

(q,V-w) = 0 

(3.20) 

(3.21) 
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Table 3.2: Comparison of observed convergence behavior in the Darcy example for the stabilized 
QlQls (with T = 0.001) and LBB-stable Q2Q1. (Top) L2 pressure error and estimated convergence 
order. (Bottom) L2 velocity error and estimated convergence order. 

Mesh 

4x4 
8x8 

16x16 
32 x32 
64 x64 

Q2Q1 
||ep|| k 

4.92xl0 _ 1 -
l . l l x l O " 1 2.15 
2.61 x lO" 2 2.09 
6.42 xlCT3 2.02 
1.60xl0~3 2.01 

QlQls 
\\ep\\ k 

5.38X10"1 -
l . lOxlO"1 2.29 
2.60xl0"2 2.08 
6.41X10"3 2.02 
1.60xl0"3 2.01 

Mesh 

4x4 
8x8 

16x16 
32 x32 
64 x64 

Q2Q1 

||e«,|| k 

1.02x10° 
3.37X10"1 1.60 
9.55X10-1 1.82 
2.52X10"2 1.92 
6.45xl0- 3 1.97 

QlQls 

||e«,|| k 

7.48X101 

1.55X10"1 2.27 
3.68X10-2 2.08 
9.07x10-3 2.02 
2.26x10-3 2.01 

For this model, we require w € i?(div) and p G L2- Note tha t this formulation is similar to the 

u/p/w approach of t reat ing Darcy's law in weak, ra ther than strong, form. 

The presence of the divergence constraint implies tha t the resulting discrete system is again 

subject to stability restrictions. Proceeding just as before, let t he exact solution be given by (3.17). 

We can solve for the required body force / from the momentum equation, and apply this force in 

the finite element discretization, along with the necessary boundary conditions. 

Table 3.2 presents the convergence results for this example problem. For the pressure fields, 

the rate of convergence for both elements is the same as in the Stokes example, with k = 2. The 

behavior with respect to the velocity field is a different story, however. This t ime, both elements 

show k = 2 convergence for the velocity field. In fact, the stabilized Q l Q l s slightly outperforms 

the stable Q2Q1 in terms of overall accuracy. Even though the Q2Q1 element possesses a higher 

interpolation order, the convergence of the velocity field in this example seems to be limited by the 

linear pressure approximation. For this example, the use of equal order interpolation thus seems 

particularly compelling. 
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Figure 3.4: Geometry for Terzaghi's one-dimensional consolidation problem. 

3.2.3 One-Dimensional Consolidation 

The previous numerical examples represent limit states in which the porous medium is either im

permeable but deformable (Stokes) or permeable but rigid (Darcy). The most common cases of 

interest, however, are porous media that are both permeable and non-rigid. Developing analytical 

solutions in this regime is more challenging, though several well-known examples exist [Cryer 1963; 

Terzaghi and Peck 1967]. 

In 1923, Terzaghi proposed the first theory to consider the one-dimensional consolidation of a 

saturated soil layer as a result of a uniform surface traction (Figure 3.4). In particular, he considered 

a homogeneous layer of height h resting on a rigid, impermeable bed. The upper surface is freely 

drained, so that the pore pressure at the surface boundary remains at atmospheric conditions at all 

times. At some initial time, a uniform traction w is applied at the surface. The sudden application 

of the load leads to an instantaneous rise in pore pressure throughout the soil layer. Since fluid is 

allowed to freely drain through the surface, however, there is a gradual dissipation of this excess 

pressure with time, and an increase in effective stress. As a result, surface settlement is observed. 

For the simulations, we use a linear elastic model for the soil constitutive behavior. Because 

of the one-dimensional nature of the problem, the domain is discretized using a single column of 

quadrilateral elements. On the left and right boundaries, displacements are fixed in the horizontal 

direction. On the lower boundary, displacements are fixed vertically. For the fluid flow, all boundaries 

are impermeable, except for the upper surface where a prescribed pressure (p = 0) is set. For the 

purposes of comparison, we consider two cases: a high-permeability case (with k\ = 10 - 1 1 m2) and 

a low-permeability case (with k2 = 10 - 1 4 m2). The remaining parameters used for the simulation 

are as follows: surface load w = 1 kPa, bulk modulus k = 100 kPa, Poisson ratio v = 0.2, dynamic 

viscosity of water /J, = 10~6 kPa-s, time step At = 0.25 s, stabilization T = 1.0. The domain was 

discretized with 32 quadrilateral elements. 

We begin with the low-permeability simulation. Figure 3.5 presents the pressure profiles after the 

initial time step. When the surface traction is applied, the pore pressures throughout the domain rise 

to be equal to the overburden stress (p = w), except for in a thin layer near the drainage boundary. 

The unstable Q1Q1 element, however, predicts wild oscillations in the pressure field. In contrast, 

the stable Q2Q1 and stabilized QlQls perform well. 
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Figure 3.5: Comparison of excess pressure solutions in the first time step for Terzaghi's one-
dimensional consolidation problem with k = 10 - 1 4 m2. Simulations results are presented for (top) 
unstable Q1Q1 elements, (middle) stable Q2Q1 elements, and (bottom) stabilized Q l Q l s elements. 
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Figure 3.6: Comparison of the numerical and exact excess pressure solutions for the high-permeability 
case (k = 1 0 - n ) using the stabilized formulation. 

Note, however, tha t this simulation reveals another numerical difficulty tha t arises from the use 

of continuous pressure elements. Upon loading, the pressure throughout the domain is equal to 

w, but the condition p = 0 is strongly enforced at the surface. In reality, a thin boundary layer 

exists where there is a smooth transition from p = 0 to p = w, bu t the discrete mesh is unable 

to resolve this layer. As a result of the extremely sharp gradient, pressure overshoots are observed 

near the surface for early times. This effect is occasionally referred to as Gibbs ' Phenomenon, in 

reference to a similar observation about the behavior of finite Fourier series interpolations near j u m p 

discontinuities [Gibbs 1898]. In this situation, a discontinuous pressure interpolation would help, 

as there is no hope of resolving a smooth transition. Alternatively, additional numerical diffusion 

could be added near the sharp gradient. Nevertheless, these minor oscillations do not propagate 

to the rest of the domain, and the performance of the two stable elements is far superior to the 

s tandard Q1Q1. We also note tha t with progressing time, the initial errors in the pressure field for 

the unstable Q1Q1 element slowly dissipate. A careful study of this effect can be found in [Murad 

and Loula 1994]. Clearly, however, the behavior at early times is unacceptable. 

Before concluding this example, we examine the high permeability case. Due to the higher 

conductivity, drainage and settlement take place on a much shorter t ime scale. Figure 3.6 compares 

the finite element solution using the stabilized scheme with the exact analytical solution at several 

t ime steps, with good results. Upon refining the spatial and temporal discretizations, the stabilized 

scheme converges to the exact solution. • 

3.2.4 Three-dimensional Footing 

Before concluding, we should emphasize tha t the same stabilization scheme can also be applied 

in three-dimensions. For our final example, we examine the three-dimensional footing previously 

introduced in Figure 3.1. There, strong pressure oscillations were observed using the unstable Q1Q1 

hexahedra. Figure 3.7, in contrast, shows the results when using the proposed Q l Q l s formulation. 
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Figure 3.7: Predicted pressure field for the undrained footing problem using (left) stable Q2Q1 
elements and (right) stabilized Q1Q1 elements. The unstable Q1Q1 element solution is presented in 
Figure 3.1 

Upon comparison with the stable Q2Q1 solution, we find excellent agreement (both in the "eye 

norm" and quantitatively). 

The three-dimensional example provides the most compelling computational argument for using 

a stabilized scheme. The stabilized QlQls mesh has 19,652 degrees of freedom, while the Q2Q1 has 

112,724 degrees of freedom. Furthermore, the QlQls element requires 8 Gauss integration points 

per element for exact integration, while the Q2Q1 element requires 27. The total computational is 

therefore much reduced, while still obtaining good convergence behavior. 

At this point, we will leave off with further numerical examples. We note that the simula

tions in later chapters use the same stabilization scheme, and illustrate its effectiveness for elastic, 

hyperelastic, and elastoplastic material models. The same formulation will also be applied to satu

rated, unsaturated, and variably-saturated media, with good results. Hopefully the broad array of 

applications will further serve to justify its robustness and generality. 

3.3 Conclusion 

Stabilized methods can offer tremendous computational advantages over standard approaches. In 

particular, one can employ meshes with fewer degrees of freedom, fewer Gauss points, and simpler 

data structures. The additional stabilization terms can also improve the convergence properties 

of iterative solvers. These factors become crucial when considering large-scale, coupled, three-

dimensional problems. 

In this work we have proposed a stabilization scheme to allow for the use of Q1Q1 elements 

in both 2D and 3D. The same scheme can also be applied to simplicial elements. The method 

employed has several appealing features. It requires only a minor modification of standard finite 

element codes, and adds little additional computational cost to the assembly routines. All necessary 

computations can be performed at the element level using standard shape-function information, 
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and no higher-order derivatives or stress-recovery techniques must be employed. It also leads to a 

symmetric modification of the system matrix, which is advantageous if the underlying problem is 

symmetric. 

As the numerical examples have demonstrated, the stabilization scheme is robust and leads to 

high-quality solutions. In our opinion the key disadvantage is that the resulting solution may be 

overly diffusive in the presence of extremely sharp gradients. As we have indicated, however, this 

effect can be easily controlled using the stabilization parameter r . 

As far as future work is concerned, we believe additional investigation should be devoted to 

exploring the behavior of stabilization schemes near boundaries, as it is well known that many 

schemes have degraded accuracy in these regions [Becker and Braack 2001]. More detailed studies of 

the interaction of the stabilization scheme with the time integration method would also be of interest. 

The general conclusion, however, is that the computational advantages offered by stabilized methods 

are very appealing. 
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4 Solution Methods 

We began this work by formulating a coupled model for the behavior of saturated and unsaturated 

porous geomaterials. We then designed a stabilized finite element method to discretize the coupled 

formulation with efficient, equal-order elements. From a computational point of view, this equal-

order interpolation is far more appealing than the unequal interpolation commonly used in practice. 

Nevertheless, even the stabilized discretization can lead to very large algebraic problems, especially 

in three-dimensions. The size and ill-conditioning of these systems demands special attention, and 

is the focus of this chapter. 

After the introduction of spatial and temporal discretizations, recall that we are left with a 

system of n nonlinear residual equations in the form 

R(x) = 0 (4.1) 

that must be solved in each time step to advance the solution. For typical problems, n may be 

only a few thousand, or perhaps several million. There is therefore a clear need to develop robust, 

efficient, and scalable solution techniques for (4.1). 

To deal with the nonlinearity inherent in our problem, we can use Newton's method (or a 

Newton-like method) to solve for the solution x satisfying (4.1). A simple illustration of Newton's 

method in one-dimension is given in Figure 4.1. Given a trial configuration xk, we construct a linear 

approximation to the governing equations about this configuration, 

R{x) « R(xk) + Jk-Ax (4.2) 

where Jk = [dR/dx]k is the nx n Jacobian of the system. This leads to an iterative update scheme 

in which we solve 

Jk • Ax = -R(xk) (4.3) 

for an increment Ax and update Xk+i = Xk + Ax. Given a good initial guess XQ and some mild 

assumptions about R(x), Newton's method will show quadratic convergence in a neighborhood of 

x. Clearly, however, a good initial guess is essential to success. Since little can be said about 

its global convergence properties, additional "globalization" procedures—e.g. linesearch and trust 

region methods—are typically included to improve robustness. 

39 
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R(x) 

" xk+2 xk+l xk 

Figure 4.1: Illustration of Newton's method for a scalar function. 

The development of practical methods for solving (4.1) relies on two key ingredients. First, we 

need a method for solving very-large systems of the form (4.3) as efficiently as possible. Second, 

the given linear solver must then be embedded within a nonlinear solver tha t actually implements 

Newton's method. Since the bulk of the computational expense in these simulations is spent solving 

linear systems, a goal of the nonlinear solver is to minimize the expense of each Newton update . 

At the same time, the nonlinear solver should include additional checks to ensure tha t only good 

upda te steps are taken. In this chapter we will explore both ingredients. 

4.1 Linear Solvers 

In this section, our focus is on efficient solution methods for the linear system (4.3). The solution 

of these systems form the basis for any Newton or Quasi-Newton algorithm, and the effectiveness of 

the linear solver is crucial to the performance of the nonlinear algorithm. 

4.1.1 Direct and Iterative Solvers 

Before focusing on the particular s tructure of our coupled problem, we remark tha t there are two 

broad classes of methods for solving linear systems of the form Jx = b, direct and iterative. The 

properties of each approach play a significant role in selecting the most appropriate solution algo

ri thm, and so we provide a brief review of their primary features. Before we begin, however, we 

remark tha t these sorts of discussions are often phrased as direct versus i terative—with the implica

tion tha t this is an ei ther/or choice. Fortunately, the current spectrum of solution methods is much 

more complex, and the traditional advantages and disadvantages of the two methods have quickly 

blurred with the rise of more sophisticated implementations and even hybridized methods. 

The first basic class encompasses direct solvers, in which one a t t empts t o form an explicit fac

torization of the system matr ix J. For example, a direct solver may a t t empt to form an LU or 

Incomplete-Cholesky factorization, depending on the symmetry properties of the system matrix. 
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There are several advantages to such an approach. First, the computational time for a direct factor

ization is typically fixed by the size of the matrix and number of nonzero entries, and is unaffected 

by the conditioning of J . As a result, for ill-conditioned matrices, direct factorizations are very 

appealing. Furthermore, once an explicit factorization is computed, the forward substitution phase 

required to compute the solution x for a given right hand side b requires a trivial amount of additional 

work. Therefore, if one needs to solve systems of the form Jxi = bi with a constant J but many 

different right hands sides 6,, J need only be formed and factored once. The cost of the factorization 

can then be amortized over many right hand sides. As this situation arises frequently in practice, 

this is another key appeal of direct methods. Indeed, in our later discussion of Schur-complement 

reduction we will run into precisely this situation. 

The key difficulty in developing scalable algorithms using sparse direct solvers, however, is their 

memory usage. While J is sparse, its factors are typically much denser. Thus, if one computes an 

LU factorization of J, large amounts of additional memory must be allocated to account for fill-in of 

entries within L and U. Careful re-ordering of the unknowns can minimize this fill-in, but by only 

so much. These re-ordering strategies are also expensive in and of themselves. 

For 2D problems, this drawback is usually not severe enough to present a serious bottleneck. 

Also, even large 2D problems rarely have more than a few hundred-thousand unknowns. Direct 

factorizations of even modest 3D problems, however, can quickly overrun the available memory on 

a typical workstation. As a result, direct factorizations may be infeasible for large, 3D simulations 

unless substantial amounts of memory are available. This fact has prompted a significant effort at 

developing parallel sparse direct solvers, which maintain the advantages of a direct solve while using 

the much larger memory resources of shared- and distributed-memory platforms. Many direct-solvers 

also exploit out-of-core memory management to minimize memory bottlenecks. 

In summary, direct solvers are typically robust and easy to use, but memory-intensive. Iterative 

solvers, loosely speaking, are the reverse. Instead of explicitly factoring J, iterative solvers attempt 

to form a sequence {xm} that converges to the desired solution. Since no factors must be stored, the 

additional memory-requirements associated with dense fill-in are avoided. The major downside to 

iterative methods is that they are very sensitive to the spectral properties of J . For ill-conditioned 

matrices, preconditioning techniques are therefore essential to achieving quick convergence. For 

example, instead of solving the original system Jx = b, we can introduce a (left) preconditioning 

matrix P and solve the preconditioned system 

(P~1J)x = P-1b (4.4) 

If the matrix (P~lJ) has better spectral properties than J itself, then the iterative solver will 

converge in fewer iterations. Of course, one must balance this decrease in iterations with the expense 

of computing P _ 1 . For example, neither P _ 1 = / or P~l = J - 1 are good preconditioning choices. 

In the first case, the preconditioner is trivial to apply, but leads to no convergence improvement at 

all. In the second case, the resulting system is perfectly conditioned and trivial to solve, but it is as 

expensive to compute the preconditioner as to solve the original system itself. 
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Unfortunately, since preconditioning is often problem-specific and requires careful tuning, it

erative solvers are not as robust or easy to use as direct solvers. Thus, most commercial finite 

element codes provide a direct solver as their default choice, though iterative options are becoming 

increasingly frequent. Indeed, many good black-box preconditioners have been developed in recent 

years that work well for a wide-range of problems, with little or no tweaking on the part of the 

user. Typically, these are algebraic preconditioners that can be constructed from the matrix en

tries in J with no knowledge of the underlying problem being discretized. Unfortunately, these 

general-purpose preconditioners typically work best for algebraic problems that arise when solving 

scalar PDEs, or from single-physics applications. They are typically less successful when applied to 

multi-physics applications, like the coupled solid-deformation/fluid-flow problems considered in this 

work. In these situations, much of the ill-conditioning arises from attempting to couple governing 

equations which have widely different magnitudes and mathematical character. In these situations, 

physics-based preconditioning is often more appropriate. The preconditioner is endowed with knowl

edge of the underlying problem being discretized. By being problem specific, however, physics-based 

preconditioners are less widely applicable than their algebraic counterparts. Again, however, middle 

ground exists. In this work, we will explore preconditioning techniques that are aware of the coupled 

nature of the governing equations, but still use black-box preconditioning techniques to their best 

advantage. 

A final advantage of iterative solvers is that the user specifies the accuracy with which a given 

linear system should be solved. In many cases, it is sufficient to only find a rough approximation 

to the solution—perhaps we only need to know x to one or two significant digits—and so compu

tational effort can be saved by specifying a high tolerance for convergence. A direct solver always 

provides an "exact" solution, at constant computational cost, and so we cannot save effort when 

only an approximate solution is necessary. We will explore this feature as we discuss inexact Newton 

methods. 

As stated earlier, the basic features of iterative and direct solvers cited here are generalizations, 

and current research is focused on overcoming these traditional disadvantages. These improvements 

may either come from modifying the original techniques, or combining direct and iterative methods 

into a hybrid method. For example, block iterative methods have been developed that are more 

efficient when solving with many right hand sides—a traditional strength of direct solvers [Saad 

2003]. In multigrid methods, an iterative solver may be used to solve the full problem on the fine 

mesh, but the coarse-grid problems are sufficiently small to be handled by a direct solver. Similarly, 

when examining block-structured or domain-decomposed problems, a direct solver may not be able 

to handle the global problem, but can efficiently solve smaller sub-problems. An iterative phase can 

then be used to compute the global solution efficiently using the sub-problem solutions. 
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4.1.2 Krylov-Subspace Methods 

Within the broader class of iterative methods, we are primarily interested in Krylov-subspace meth

ods. This class encompasses a variety of approaches—e.g. Conjugate Gradients (CG) for sym

metric systems and Generalized Minimum Residual (GMRES) and Stabilized Biconjugate Gradients 

(BICGSTAB) for non-symmetric systems, along with many others [Saad 2003]. To illustrate the ba

sics of Krylov iterative methods, let the approximate solution at an iteration m be denoted by xm, 

starting from an initial guess XQ. The residual at each iteration is rm = b—Jxm, with initial residual 

r0. To avoid confusion, note here the use of a lowercase rm for the linear residual at solver iteration 

m, distinct from the nonlinear residual Rk at Newton iteration k as introduced in equation (4.1). 

Now, let the mth-order Krylov subspace /Cm be defined as 

JCm(J, r0) = span{r0, Jr0, J2r0,..., J f c - 1 r 0 } (4.5) 

In general, a Krylov subspace method is a projection method in which one determines the approxi

mate solution xm from the affine subspace XQ + K,m such that 

Tm ± Cm (4.6) 

for a m-dimensional subspace Cm (the constraints space). Different versions of Krylov methods 

arise from different choices for Cm. For example, in GMRES one chooses Cm = JK,m. In the resulting 

iteration, one can show that we approximate the exact solution to Jx = b by the vector xm £ Xo+ICm 

that minimizes the norm of the residual, | |rm | |2. 

A key observation is that, in the construction of the Krylov subspace K.m, only matrix-vector 

products of the form w = Jv are required. This fact has important algorithmic implications. In 

particular, when using Krylov methods we never need an explicit representation of J. All we need 

is a function that can return the matrix-vector product Jv given an input vector v. In many cases, 

J may be difficult or expensive to compute explicity, but we can develop cheap methods to compute 

matrix-vector products with it. 

As a simple illustration, recall that the Jacobian matrix Jk is explicitly computed as 

BR 
J(xk) = ^(xk) (4.7) 

at some configuration Xk- Instead of explicitly forming and storing the system matrix Jk, the vector 

product JkV can often be accurately-approximated by a finite-difference directional derivative, 

R(xk + ev) - R{xk) ,. „, 
Jkv « (4.8) 

e 

where e is a scalar perturbation parameter. When using a Krylov-subspace method, it may then be 

possible to avoid evaluating the system matrix altogether, as the required matrix-vector products 



www.manaraa.com

SOLUTION METHODS | 44 

(a) Natural ordering (b) Block sorted (c) Block sorted, King ordering 

F igure 4.2: Sparsity patterns for the Jacobian Jk using various degree-of-freedom ordering strategies. 
Symbols represent non-zero entries in the matrix. 

can be approximated instead with two residual-function evaluations. This observation leads to so-

called matrix-free Newton-Krylov methods [Knoll and Keyes 2004]. Of course, in practice the story 

is not so simple, as Jk may be ill-conditioned. Often one ends up allocating some matr ix storage for 

preconditioning purposes, leading to a "pseudo" matrix-free method. Nevertheless, the underlying 

principle is quite useful if Jfc cannot be evaluated analytically, or if it is too expensive to compute 

and store. 

As they are not the focus of the current work, we will not discuss matrix-free methods further. We 

will, however, exploit the matrix-vector properties of Krylov methods in a variety of other contexts, 

to implicitly represent quantities tha t cannot be explicitly formed. For the current case, evaluating 

the desired Jacobian analytically is not difficult, and so we will explicitly compute Jk- Further, when 

using complex elastoplastic material models, the additional t ime to evaluate the Jacobian and resid

ual is not significantly greater than just evaluating the residual. In both cases an expensive stress 

integration routine must be called, and this may dominate the assembly time. From a memory point 

of view, however, the ability to avoid storing the Jacobian would be tremendously appealing. Un

fortunately, Jacobian-free methods have not been well-explored for the class of problems considered 

in this work. They therefore represent an interesting avenue for future research. 

4.1.3 Block Partitioning 

With these general observations in mind, we now return to coupled problems, beginning with the 

u/p formulation. Because this F E model derives from two coupled governing equations, the discrete 

problem inherits an interesting 2 x 2 block-structure. In particular, the Jacobian system can be 

parti t ioned such tha t 

' A BX 

B2 C 

Au 

Ap R„ 
(4.9) 
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where the A block is nu x nu and the C block is np x np. Because the pressure is a scalar field, 

while the displacement is a vector field with as many components as there are spatial dimensions, 

the dimensions of the A block will typically be much larger than those of the C block. For an equal-

order interpolation in three-dimensions (i.e. using a stabilized scheme), nu = 3np. If a higher-order 

interpolation is used for the displacement field, then this size disparity is further exaggerated. 

Figure 4.2 illustrates typical sparsity patterns for the Jacobian using various degree-of-freedom 

reordering strategies. The dark symbols denote non-zero entries in the system matrix, implying a 

coupling between the degrees of freedom for that row/column pair. Using a natural ordering, in 

which degrees of freedom are numbered in a more-or-less arbitrary way, no clear pattern is apparent. 

Pressure degrees of freedom are arbitrarily interlaced with displacement degrees of freedom. If 

however we first number all of the displacement degrees of freedom, only then followed by all of the 

pressure degrees of freedom, the block-structure expressed in (4.9) becomes readily visible. In this 

example, equal-order interpolation was used on a three-dimensional mesh, so the A block is three 

times as large as the C block. We can take this reordering process even further, renumbering degrees 

of freedom within each block. For example, we can use a Cuthill-McKee [Cuthill and McKee 1969] 

or King algorithm [King 1970] to attempt to minimize bandwidth, or a Minimum-Degree algorithm 

[George and Liu 1989] to attempt to minimize fill-in during a direct factorization. 

Now, when attempting to solve such systems, one option is to ignore this inherent structure and 

simply treat the linear system monolithically. The alternative is to develop linear solution techniques 

that directly exploit the block-partitioning. As we shall see, these block-solution techniques can pro

vide significant advantages in speed and memory usage in comparison to attacking the monolithic 

problem directly. The improvement in performance derives from the fact that we incorporate addi

tional information about the underlying coupled PDEs into the solution procedure. In the next two 

sections we consider two block-based solution techniques. In the first section, we describe the classic 

technique of Schur-complement reduction. In the second section, we describe a block-preconditioning 

technique that circumvents some inherent bottlenecks in the Schur-complement approach. Having 

discussed the 2 x 2 problem, we will then extend the same framework to address the solution of 

linear systems arising from u/p/w discretizations: 

A 

B2 

B1 

C 

D2 

Dl 

E 
k 

"AM" 

Ap 

Aw. 
= -

% i o m . 

-^mass 

_-^darcy_ 

(4.10) 

In this case, the system matrix has a 3 x 3 block-tridiagonal structure that can be put to good use. 

As a preliminary observation, the 2x2 {u/p) system matrix admits a variety of block-factorizations 

[Benzi et al. 2005]. For example, a block LDU factorization is 

J = 
I 0 

BoA-1 I 

A 0 

0 S 

I A'^Bi 

0 J 
(4.11) 
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where S = C — B2A
 YB\ is the Schur-complement (of 4̂) for the system. Equivalent LU factoriza

tions are 

J = 
A 0 

B2 S 

I A~lBx 

0 I 
(4.12) 

and 

J = 
B2A~Y I 

A Bx 

0 S 
(4.13) 

These decompositions will prove useful in subsequent sections. 

4.1.4 Schur-Complement Reduct ion 

Schur-complement reduction is a common technique for solving block 2x2 systems of the form (4.9). 

Assuming that A is nonsingular, we can formally solve for Ait in terms of Ap using the first row of 

(4.9), 

Au = A-1 (Rmom. - BiAp) (4.14) 

Substituting this expression for Au in the second row, we arrive at a reduced np x np linear system 

(C - B2A~1B1) Ap = Rmass - B2A-lRmom. (4.15) 

where, again, S = C — B2A~1B\ is the Schur-complement. This leads to a two-step procedure for 

solving (4.9): 

• Determine the pressure increment Ap by solving the reduced Schur system 

SAp = Rmass - B2A-^Rtt (4.16) 

Determine the displacement increment Au by solving 

AAu = R„ BiAp (4.17) 

Schur-reduction is simply block Gaussian elimination applied to J . On the surface, this two step 

approach appears to save quite a bit of work. The original system matrix was (nu + np) x (nu + np). 

Using the Schur-reduction approach, we need only solve a np x np system followed by a nu x nu 

system. The catch is that S contains a term involving A~1, which in this case means that S is dense 

and expensive to form, let alone solve with. 

In this case iterative methods provide a natural solution. To solve the system (4.16) using a 

Krylov-method, we never need an explicit representation of S, only the ability to form matrix-

vector products with it. For example, given an input vector Vin we can compute the output vector 
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Vout = Svin in a three step process: 

• Set yi = Bivin 

• Solve Ay2 = yi 

• Return vout = Cvin - Bjy2 

With this implicit representation, it is straightforward to solve the reduced Schur system without 

ever having to work directly with a dense S. The key downside to this approach, however, is that 

every time we need to multiply by S we must perform a solve with A. Using another iterative 

solver to deal with A establishes an "inner/outer" iterative scheme. At each outer iteration with 

S we perform inner iterations with A. As a result, we may end up solving with A dozens or even 

hundreds of times. The success of this method therefore hinges on the ability to develop good 

preconditioners PA for A and Pg for S. 

Fortunately, recall that the A sub-block is equivalent to the stiffness matrix one encounters in 

a simple solid-mechanics setting, without any coupled fluid flow. Solving the uncoupled, displace

ment problem is significantly easier than solving the fully-coupled solid/fluid problem. Many good 

preconditioners have been designed over the years for elastic and elastoplastic problems, and the 

Schur-reduction approach can directly incorporate these methods. Also, developing a good precon-

ditioner for S in the current case is not too difficult. Therefore, since efficient methods exist for 

solving with A and 5, the Schur-reduction approach can be quite practical—hence its popularity. 

For two-dimensional and small three-dimensional problems, it may be possible to use a direct 

solver on A. Indeed, it is much easier to factor A alone than the entire coupled system J. It is also 

only necessary to factor A once, since it remains constant within each Newton iteration. Solving 

with many right hand sides can then be performed at trivial additional cost. The direct factorization 

avoids having to perform any inner iterations, and leads to a hybrid iterative/direct method that is 

tremendously efficient. 

Unfortunately, this approach is limited to problems where the A block is sufficiently small that a 

direct solver can handle it. For very large problems, we must revert to an iterative inner solver. In 

the next section we consider an alternative approach that circumvents the outer/inner scheme and 

avoids the inner solver bottleneck. 

4.1.5 Block u/p Precondit ioning 

Using the Schur-reduction approach, one breaks the coupled system J into two smaller, more man

ageable pieces. By breaking the problem into these pieces, we can use efficient methods that have 

been developed for the sub-problems. The downside is that we need to repeatedly solve with A, the 

largest sub-block. In this section an alternative approach is considered that leverages good solution 

methods for the sub-blocks, but avoids the inner/outer iteration bottleneck. To do so, we solve the 

full (nu + np) x (n„ + np) system J all at once, but build a block-structured preconditioner P. In 
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particular, consider a block triangular preconditioner PL of the form 

A 0 

B2 S 
such that (P£JJ)x = (P^b). (4.18) 

The subscript L denotes that this preconditioner acts from the left. The equivalent right precondi

tioner is 

R 
A Bx 

0 S 
such that (JP^l)(PRx) = b. (4.19) 

Preconditioners of this type were first studied in [Bramble and Pasciak 1988], and have received 

significant attention in recent years in the context of solving the Stokes and Navier-Stokes equations 

[Elman et al. 2008]. Note that these choices of PL and PR are simply the lower and upper triangular 

factors in (4.12) and (4.13), respectively. Focusing on PL for now, its inverse is also lower triangular, 

PL1 
A-1 

(4.20) 

Applying this preconditioner to the system matrix 

0 
PL1 J 

A-1 

S^B^A-1 S-1 

A BY 

B2 C 

I A-lBi 

0 / 
(4.21) 

The preconditioned matrix is block upper triangular, with identity blocks on the diagonal. It is 

straightforward to show that the preconditioned matrix has only one distinct eigenvalue (A = 1), 

and a Krylov-based iteration on the preconditioned system would converge in at most two iterations 

[Benzi et al. 2005]. 

In practice, we should not form the "exact" preconditioner PL indicated above. Note that PL 

involves inverses of A and S, and so constructing PL would be just as expensive as solving the original 

system J through the Schur-reduction technique. Instead, we will try to build a preconditioner PL 

that is a good approximation to PL, but is much less expensive. Assuming the approximation is 

good, we can expect an iterative solver to converge in relatively few iterations (though likely more 

than two). 

Also, note that the preconditioned matrix is nonsymmetric, even if the underlying problem had 

an original symmetry. In this form, we can no longer use a symmetric method such as the standard 

CG iteration, which is fast to apply on a per-iteration basis and has a short-recurrence relation. A 

nonsymmetric method like GMRES works, but is more expensive and needs to store previous basis 

vectors. In [Bramble and Pasciak 1988], the authors recovered a symmetric method by using a 

non-standard inner product inside the CG iterations. In practice, the use of such a symmetrized 

method may be unnecessary. If the preconditioner works well and the number of iterations is kept 
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small, the disadvantage to using a slower, nonsymmetric iteration such as GMRES will not be great. 

Further, in many cases (e.g unsaturated flow) the original system matrix is already nonsymmetric. 

The form of PL involves two levels of approximation. Recall that S is explicitly dense. The 

first step is therefore to replace the dense S with a sparse approximation S. Then, instead of using 

explicit inverses A~x and 5 _ 1 , these blocks are replaced with their own preconditioners, which by 

design are good inverse approximations. That is, we introduce sub-preconditioners P^ for A^1 and 

Pg1 for S~l. With these component pieces, the final form of P^1 is then 

PslB2PXl 

0 
p - i 

(4.22) 

We now consider the concrete implementation of PL
 x and the right-acting equivalent PR . For 

convenience, define the following four block matrices: 

p - i Mk 
I 

B2 I 
Mi 

I Bl 

I 
Mx = 

The the left and right acting inverses can be decomposed as 

M, = 
p - i 

MXM%M3 and P^1 = M3M^MX 

(4.23) 

(4.24) 

which furnish a ready way to compute the necessary matrix-vector multiply operations. For example, 

a vector-multiply operation with P^1 and a partitioned input vector (r™n,rfn) can be performed 

piecewise as: 

Step one: 

rS 'in (4.25) 

Step two: 

P^(rfn + Bir
p
out) (4.26) 

Once we have computed P ^ 1 and Pg1, the application of the preconditioner in the context of a 

GMRES iteration is therefore straightforward. 

Clearly the Schur-reduction and block preconditioning techniques are strongly connected. Note, 

for example, the formal similarity of the two-step preconditioner application (eqns. 4.25 and 4.26) 

and the two-step Schur-reduction solution process (eqns. 4.16 and 4.17). The key distinction is that 

the Schur-reduction technique forms implicit representations of the exact inverses A-1 and 5 _ 1 , 

while the block-preconditioning technique makes due with cheaper, approximate inverses P^1 and 

Before concluding this section, we make a final comment about software design. We observe 
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Figure 4.3: Schematic illustration of the interaction between the GMRES solver, block preconditioner, 
and sub-preconditioners for A and 5. All interactions take place through vector-multiply interfaces, 
leading to a natural modularity in the code design. 

that the block u/p preconditioning strategy has an inherent modularity built into it (Figure 4.3). 

The complete linear solver consists of a GMRES module, a block preconditioning module, and two 

sub-preconditioners. All interactions between these modules, however, only take place through 

vector-multiply operations. As a result, the inner workings of each module can be kept hidden 

from other modules, and need only provide a standardized vector-multiply interface. This approach 

therefore naturally lends itself to an object-oriented strategy. The modularity makes it very easy 

to modify or test new component pieces, without having to redesign the entire code. For example, 

different sub-preconditioners can be readily tested since the block-preconditioner can be written so 

that it is independent of the inner workings of the sub-preconditioner. Similarly, the GMRES solver is 

independent on the inner workings of the block-preconditioner. This inherent modularity is reflected 

in the object-oriented design of our code. 

4.1.6 Sub-Preconditioners 

In the next few sections, we consider particular forms for the sub-preconditioners PA and Ps- Note 

that the use of either the Schur-reduction technique or the block-preconditioner requires two sub-

preconditioners, and so the following comments are generally applicable. First, however, we note 

that good preconditioners for a Schur-complement reduction approach may not necessarily be as 

effective when working with a block-preconditioned approach, and vice versa. To illustrate this idea, 

we observe that in the Schur-reduction technique the key bottleneck is the repeated solves with A. 

As a result, significant performance increases can be observed by developing fast preconditioners 

for A. In general, a preconditioner that is cheap to build and apply may be more effective than a 

more expensive one, even if the cheaper one requires a few more iterations. Ultimately it is only 

the total wall time that matters. In the block-preconditioned approach, however, each iteration is 

more expensive since we are working with the entire (nu + np) x (nu + nP) system at once, and have 

to apply a more complicated, block-structured preconditioner. In this case, reducing the number of 

iterations has a bigger payoff, and so a more expensive but better A*1 approximation may be favored. 

Nevertheless, since both methods are based on similar forms, good PA and Ps preconditioners for 

Block UP 
Preconditioner 
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one should continue to be good for the other. What is best for one, however, may not be best for 

the other. 

Sparse Schur Approximations 

The first question to be addressed is how to precondition the exact Schur-complement S = C — 

B2A~XB\. While C is sparse, the presence of the inverse stiffness matrix A~l in the second term 

leads to a dense S which is awkward to deal with. At least two options are available to avoid working 

with dense matrices. 

The first is to approximate the action of 5 _ 1 through its own linear solver, exactly as in the 

Schur-reduction technique. In this case, however, only an approximate solve is needed and a large 

tolerance for convergence can be used. Cheaper approximations of the component matrices could also 

be used, in an attempt to balance the ease of computing Pg1 with the quality of the approximation. 

The second approach is to develop an explicit but sparse approximation to S, and then compute 

the preconditioner based on this sparse approximation. Again, we consider a few possibilities for 

how this can be accomplished. Perhaps the simplest approximation, and the one we will focus on in 

this work, is the approximation 

S = C-B2 &\&g{A)-1B1 (4.27) 

This approximation is easy to compute and has a good sparsity pattern. Another appealing feature 

is that it accounts for possible assymmetries in B2 and B\ (i.e. in the case B2 ^ Bj). Of course, 

the quality of this approximation depends on the diagonal dominance of A. 

For the symmetric B2 = Bj case, another possibility to consider is 

S = C- aMp, [Mp)ab = [ <j>a<pb dV, a = — i — (4.28) 

Here, Mp is the np x np pressure mass matrix, i.e., the product of all pressure shape functions 

{4>a}- The use of the pressure mass matrix to approximate B2A~lB\ is motivated by observations 

in [Verfurth 1984] for the cases of incompressible elasticity and Stokes flow. If we have a linear elastic 

material model and examine the undrained limit (fe —> 0), the Schur complement operator B2A~XB\ 

is the same as that encountered for Stokes flow or incompressible elasticity. In this case, Verfurth 

demonstrated that the pressure mass matrix is spectrally equivalent to B2A~YB\. The current 

case is somewhat different in that we have nonlinear material models, locally-drained conditions 

(fe > 0), and a nonzero C. Nevertheless we have obtained good results using the form (4.28). For 

low permeability situations, the Mp term tends to dominate, while for high permeability situations 

the C term tends to dominate. The scalar a is a weighting factor, based on the compressibility of 

the solid, which is used to ensure that the two components Mp and C of the sparse approximation 

have appropriate relative magnitudes. 
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Black-Box Algebraic Preconditioners 

Assuming we have explicit (and sparse) representations of A and S, the next step is to compute 

preconditioners PA and Ps- In our numerical experiments we examine three possibilities, all of 

which can be considered black-box preconditioners. These preconditioners can be constructed on a 

purely algebraic basis, without access to the mesh topology, element subroutines, or knowledge of 

the underlying equations being discretized. In our experiments, we use the same preconditioning 

strategy for both A and S—though with the parameters tuned for each separate matrix. In principle 

of course one can use differing strategies that are better optimized for each sub-problem. We have 

found that all three preconditioning strategies, however, work well for both the stiffness and the 

sparse Schur-complement matrices. 

In the first approach, we use a sparse direct solver to factorize A and S. The "preconditioners" 

P J 1 and Pg1 are then essentially exact inverses of A and S. Obviously, this approach should 

minimize the subsequent GMRES iteration count, since the only approximation that has been made is 

to replace the dense S with the sparse S. This approach therefore provides a good means for testing 

the quality of the sparse Schur complement approximation. These direct factorizations are quite 

expensive and quickly become memory limited—though less quickly than if we attempted to invert 

J directly. In a parallel setting, we consider a block-Jacobi approach in which the direct factorization 

is computed only for the portion of the matrix local to each processor. For the factorizations we use 

the S U P E R L U package [Demmel et al. 1999]. 

Second, we consider an Incomplete LU preconditioning (ILU). An incomplete LU decomposition 

of a matrix is a sparse approximation to a true LU decomposition. An appealing feature of ILU is 

that the quality of the approximation can be controlled by specifying how many non-zero entries are 

kept in the decomposition. As a result, one can control whether to use a fast and cheap approach, 

or a more expensive preconditioner with better approximation properties. In this work, we use 

an ILU(O) preconditioner implemented in the Trilinos-IFPACK package [Sala and Heroux 2005]. In 

parallel, the ILU preconditioning is computed processor-wise, though with the possibility of some 

overlap between processors. 

Third, we consider Algebraic Multigrid Preconditioning (AMG). For this purpose, we use the 

AMG preconditioner implemented in the Trilinos-ML package [Gee et al. 2006]. Multigrid methods 

stem from the recognition that, when solving a linear system, the error has high and low frequency 

components with respect to the grid spacing. While the high-frequency error can be quickly damped, 

the low-frequency error tends to persist and slows down the convergence of the solver. In multigrid 

methods, one instead defines a hierarchy of grids, each coarser than the next, and solves coarsened 

versions of the problem on this hierarchy. On a coarse grid, the low-frequency errors become high-

frequency errors, and can be effectively damped. By using this hierarchy, the error at all frequencies 

can be removed and swift convergence can be achieved. A key challenge in multigrid methods, 

however, is defining this grid hierarchy. In geometric multigrid, the mesh hierarchy is based on 

the finite element/difference/volume mesh used to discretize the problem. Because of the difficulty 

in defining a coarsening scheme on unstructured meshes, however, geometric multigrid has mostly 
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been limited to structured meshes. Algebraic multigrid takes a different approach, constructing the 

coarser "grids" algebraically using only the entries in the linear system, without any reference to the 

actual mesh used for the numerical discretization. As a result, algebraic methods can be used on 

arbitrary mesh topologies. Algebraic multigrid has found the most success not as a solution method 

in itself, but rather as a method for forming quality preconditioners for use in an iterative solver. 

We emphasize the all of the above preconditioning strategies (LU, ILU, and AMG) have shown 

themselves to be robust and flexible enough to deal with a wide array of model problems. Neverthe

less, they are best suited to systems arising from scalar partial differential equations or vector differ

ential equations deriving from a single physics application. Their performance when applied directly 

to coupled, multiphysics problems can be quite poor. In the methodology proposed here, however, 

the black-box preconditioners are only applied at the block level, to precondition the stiffness and 

Schur-complement matrices. As a result, we use these preconditioners to their best advantage, while 

still endowing the global preconditioning strategy with intuition about the block-structure of the 

coupled problem 

4.1.7 Parallelization Strategies 

In the numerical examples to follow, we explore both serial and parallel implementations of the 

block preconditioner. In serial, the implementation is straightforward. In parallel, however, ad

ditional questions arise as to how best to use the block preconditioner to achieve good parallel 

scalability. In the current work, we have approached the problem as follows: The system matrix 

J is distributed across processors, and the preconditioners P^1 and P^1 are similarly computed 

in a distributed manner. A global GMRES or B1CGSTAB iteration is then used to solve the coupled 

problem, preconditioned with the distributed block-preconditioner. This approach involves two lev

els of "decomposition". First, the block approach decomposes the expensive coupled problem into 

an easier one of computing good preconditioners P^1 and P<7 . Second, the expensive problems 

of computing P^1 and P^1 are made easier by distributing them across many processors. Thus, 

loosely speaking, we first do a block decomposition followed by a domain decomposition. 

While this is a natural way to approach the issue of parallelization, we can consider other al

ternatives. In particular, consider the reverse situation: first decompose by domain, and only then 

apply the block decomposition. For example, we could use an additive-Schwarz type domain decom

position preconditioner for the global preconditioner. Such preconditioners are based on smaller, 

approximate inverses built on each processor. To approximate the local Jacobian inverse (which 

remains coupled) we could then use processor-local block u/p preconditioners. 

In this work, we explore the first option. It is nevertheless interesting to consider the second alter

native, as we can envision certain situations where processor-local variants of the u/p preconditioner 

could prove useful. 
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4.1.8 Extension to u/p/w Discretizations 

We can consider a similar block preconditioning methodology for linear systems arising from u/p/w 

discretizations (or many other three-field formulations). These systems have a 3x 3 block-tridiagonal 

structure: 

(4.29) 

A 

B2 

Bi 

C 

D2 

A 
E _ 
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~Au~ 
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The Jacobian J can be decomposed as 
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A Bi 
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D2 E 

(4.30) 

where the Schur-complement S now has the form, 

S = C- B2A~XBX - D1E~1D2 (4.31) 

Note that a block LDU decomposition can be recovered from eqn. (4.30) by a suitable rearrangement 

of rows and columns. We have retained the same u/p/v ordering here merely for convenience of 

presentation. We propose the following form for the left and right preconditioners, 

PL 

A 

B2 S A 
E 

and S 

D2 E 

(4.32) 

where we have approximated the dense Schur complement S with a sparse S defined as 

S = C-B2 d iag(^)- 1Bi - Dx diag(£)-1
JD2 (4.33) 

We then use a suitable sub-preconditioning strategy to compute P^ , Pg1, and Pg as approximate 

inverses for A, S, and E respectively. To represent the action of P£~ and P^1 consider the following 

four block matrices: 

Mi 

1 

p - 1 

I 

M2
L = 

'—
i 

B2 I Dx 

I 

M* = 
\I Bx 

I 

D2 I 

M3 

• p - i 

p-1 

(4.34) 
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The left and right-acting inverses can then be written as 

p-1 = M1M£M3 and P^1 = M3M?M1 (4.35) 

which, in analogy to the 2 x 2 cases, furnish a ready way to compute the necessary matrix-vector 

multiply operations. In the case of exact sub-preconditioners (i.e. using exact inverses A"1, S"1, and 

E~x) one can again show that the preconditioned system matrix has only a single distinct eigenvalue 

A = 1. This block 3x3 preconditioning strategy therefore provides an effective framework for tackling 

the ill-conditioning inherent in J. To some extent, in the engineering community there is hesitation 

to adopt a three-field formulation in many problems due to the difficulty in developing a good solver 

methodology. We believe that the method proposed here is an effective step to removing this hurdle. 

At this point, we end our discussion of linear solver methods, and now examine how the proposed 

iterative strategies can be embedded in a nonlinear solver framework—since ultimately we are 

interested in nonlinear behavior. 

4.2 Nonlinear Solvers 

Using the block-preconditioning approach we have seen that we can efficiently solve the linear systems 

required to determine the Newton update Axk. These systems are of the form 

J(xk)Axk = -JJ(xfc) (4.36) 

A key feature of using iterative solvers is that these linear systems are only solved to a user specified 

tolerance. That is, the linear solver finds Axk such that 

\\R(xk) + J(xk)Axk\\ < v\\R(xk)\\ (4.37) 

where t] is the desired tolerance. 

An important point to recognize is that the update step Axk is determined as the solution of a 

linear approximation to the true, nonlinear residual function R. In a neighborhood of the nonlinear 

solution x this linear approximation is a good one and the method shows quadratic convergence. 

Far from the solution, however, the linear approximation may be quite poor. As a result, solving 

the linear system (4.36) to a strict tolerance does not make much sense. The predicted Newton step 

using a rough, inexact solve may be just as good as an exact solve. Only close to the solution, where 

there is good agreement between the linear and nonlinear models, is it reasonable to expect that 

solving (4.36) to high accuracy will lead to a better Newton step. 

Given these considerations, a logical approach is to introduce a variable tolerance r\k that changes 

from step to step. Close to the nonlinear solution, when ||i?(a;fc)|| is small in some sense, then r\k is 

chosen to be small as well. Far from the solution, when ||i?(xfc)|| has not yet been reduced much, 

nk is kept large, allowing for significant computational savings. If the choice of the sequence {%} 

is done well, Newton's method will continue to exhibit quadratic convergence in a neighborhood of 
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the solution x. Formally, this methodology is known as an Inexact Newton Method: 

Input: Initial guess xo, nonlinear tolerance e G [0,1) 
k=0; 
while \\R(xk)\\>e\\R(x0)\\ do 

Choose linear tolerance % € [0,1); 
Solve for Axk such that (4.37) is satisfied; 
Xk+i = Xk + Axfc; 
k < - fc + 1; 

end 
Algorithm 1: Inexact Newton Method 

The difficult part is to develop a methodology for choosing rjk that leads to significant computational 

savings but still preserves the quadratic convergence behavior of an Exact Newton Method. In our 

code we choose the forcing sequence {%} using a method proposed in [Eisenstat and Walker 1996]. 

In the numerical examples we demonstrate that an Inexact Newton Method maintains quadratic 

convergence but provides significant performance improvement over an Exact Newton Method. 

As a final note, we have modified the standard Algorithm 1 to include a backtracking linesearch 

procedure for additional robustness. The resulting approach is typically more stable when the initial 

guess Xo is far from the solution. 

4.3 Numerical Examples 

We now provide three numerical examples to test the proposed preconditioning approach. The first 

examines a linear elastic footing, and is used to examine the behavior of the preconditioner upon mesh 

refinement. The second example is similar to the first, except the computations are performed in 

parallel on a distributed-memory cluster. This example is used to test the parallel scaling properties 

of the approach. Finally, we present another serial example, but this time involving a sophisticated 

elastoplastic material model. This example is meant to test the behavior of the preconditioning 

approach with respect to more complicated constitutive behavior. It also provides an opportunity 

to compare exact and inexact variants of Newton's method. 

4.3.1 Footing Example 

We first test the performance of the block preconditioning approach in a serial (single-processor) 

environment. In particular, we wish to examine the behavior of the preconditioner with respect 

to mesh refinement. Typically, as the mesh is refined the discrete problem becomes increasingly 

ill-conditioned. Ideally, however, a preconditioner should exhibit mesh independent scaling—that 

is, the number of solver iterations to convergence for the preconditioned system remains constant 

as h —> 0. Without this mesh independence it is difficult to construct a truly scalable algorithm. 

Of course, the total solution time is expected to grow with the problem size even if the number of 

iterations is constant, since the required matrix-vector operations must be performed on increasingly 
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Figure 4.4: Geometry for the footing example, showing the mesh at six refinement levels. 

large systems. In later sections we will examine how parallel processing can be used to reduce the 

wall-time cost of each iteration and work towards a constant-in-time algorithm (the ideal goal). 

For this test problem, we examine an elastic, saturated soil subject to a surface traction repre

senting a square footing load. In later examples we will examine more sophisticated elastoplastic 

models and unsaturated soils. We note that the proposed preconditioning methodology, however, 

is independent of the constitutive assumptions. In fact, the only requirements on the underlying 

model are that A and S are invertible—otherwise, very little has been said about the basic governing 

equations. This generality implies that the block preconditioning approach can be applied to a wide 

array of applications—e.g. Stokes and Navier-Stokes flow, incompressible elasticity, Darcy-flow, con

strained optimization, etc. Only at the level of the sub-preconditioners PA and Ps does it become 

useful to incorporate additional, physics-based knowledge. 

Figure 4.4 shows the example mesh at six progressive refinement levels. The domain dimensions 

are 10m x 10m x 5m. At each refinement level, the hexahedral elements from the previous level are 

partitioned into 8 new elements. At the finest level the mesh has 557,700 degrees of freedom (418,275 

displacement degrees of freedom and 139,425 pressure degrees of freedom). Figure 4.4 also shows 

the resulting deformed configuration and excess pressure distribution at the end of the simulation. 

Note that the displacements have been exaggerated for clarity. 

The footing load is applied as a surface traction in one corner of the domain (Figure 4.5). This 

load has a uniform magnitude w in a 2.5m x 2.5m region, which then tapers linearly to zero in a 5m 

x 5m region. All boundaries are treated as no-flux, no-normal-displacement boundaries, except for 

the upper surface. The pressure at this surface is fixed to atmospheric (p = 0) and the displacements 

are unconstrained. 

At the start of the simulation, a growing surface traction is applied at a rate of 0.1 kPa/s. The 
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Figure 4.5: Plan and section geometry for the footing example. 

remaining simulation parameters are as follows: bulk modulus K = 5 MPa, Poisson ratio v = 0.25, 

intrinsic permeability k = 10~ 1 0 m 2 , dynamic viscosity of water r) = 10~6 kPa-s, stabilization 

r = 1.0, and time step At = 1 s. Because we employ a saturated, linear elastic model the governing 

equations are linear and therefore only a single linear system must be solved in each t ime step. 

Since we have a transient problem, the simulation was run for twenty t ime steps and all metrics 

were averaged over these steps. 

Table 4.1 contains a summary of the analysis. Four preconditioning strategies were analysed: 

• None: No preconditioning. 

• BP-LU: Block-preconditioning with direct LU factorizations for sub-preconditioners. 

• BP-ILU: Block-preconditioning with ILU sub-preconditioners. 

• BP-AMG: Block-preconditioning with AMG sub-preconditioners. 

Table 4.1 records two metrics of solver performance: the number of GMRES iterations required for 

convergence in each step, and the average C P U time to perform each solve. A restarted GMRES(m) 

method was used with m = 200 saved basis vectors. While not presented here, the same study using 

a BICGSTAB solver produced very similar results. These results are for right-preconditioning, though 
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Table 4.1: Comparison of preconditioning strategies at several refinement levels for the serial u/p 
footing problem. 

GMRES 

Iterations 

CPU Time 
(seconds) 

Refinement Level 
Elements 

Degrees of Freedom 

None 
UP-LU 

UP-ILU 

UP-AMG 

None 
UP-LU 

UP-ILU 

UP-AMG 

0 1 2 3 4 5 
4 32 256 2,048 16,384 131,072 

72 300 1,620 10,404 74,052 557,700 

45 115 538 * * * 
2 2 2 2 2 * 
5 9 16 30 61 * 
2 9 7 12 13 15 

0.017 0.051 1.74 * * * 
0.004 0.006 0.086 11.1 1350.0 * 
0.006 0.010 0.063 0.764 11.6 * 
0.004 0.011 0.039 0.414 3.6 37.0 

Solver failed. 

left-preconditioning is again similar. The criterion for convergence was a relative residual reduction 

tolerance of 

fl* < io-8 (4.38) 
IMI2 

The solve was deemed to have failed if it took more than 1000 iterations or if memory-resources 

were insufficient. All simulations were run on individual, identical nodes of a distributed-memory 

cluster. Each node had 2GB of memory. 

The results for the unpreconditioned systems clearly illustrate the inherent ill-conditioning of 

the coupled system, and that this ill-conditioning worsens with mesh refinement. Beyond about 

10,000 unknowns the number of iterations grows to be well more than a 1000. Even for relatively 

few unknowns, the unpreconditioned solver cannot compete with any of the other three approaches. 

In terms of iteration counts, BP-LU is the clear winner, as expected. For this case, the only 

difference between the current preconditioner and an "exact" preconditioner is the introduction of 

a sparse approximation for S. This sparse approximation appears to be a good one, as the solver 

converges in two iterations. This is the same performance as would be expected from the "exact" 

preconditioner. This approach also clearly demonstrates mesh-independent scaling with respect to 

the iteration count. Of course, iterations counts only tell a piece of the story. This approach quickly 

becomes memory-limited due to fill-in during the direct factorizations. As a result, the solver fails 

on the most refined mesh. Also, because the construction of the preconditioner is very expensive, 

this approach cannot compete with the remaining two in terms of total CPU time. 
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Figure 4.6: Sensitivity of the block-preconditioner to the soil's permeability. Gray bars indicated 
typical permeability ranges for some common geomaterials. 

The remaining two options, BP-ILU and BP-AMG both appear to be the most practical approaches. 

BP-ILU shows good performance on relatively small problems. Unfortunately, the iteration count 

grows quickly with mesh refinement and the solver ultimately fails on the most refined mesh. BP-

AMG, on the other hand, shows much bet ter refinement behavior—at least close to (if perhaps not 

exactly) /i-independent scaling. 

We have found tha t these performance trends have held across a wide array of problems and 

configurations, with BP-AMG often outperforming BP-ILU. There are certain situations, however, 

where the performance of AMG may degrade severely. For example, on distorted or anisotropically 

refined meshes the AMG preconditioner (which has no knowledge of the mesh topology) may choose 

a poor coarsening strategy. Our experience is tha t BP-ILU is often more robust in difficult situations 

and is a good fall-back approach—even if it cannot compete with BP-AMG in favorable situations. 

It should also be noted tha t significant research is currently devoted to improving the robustness of 

AMG preconditioners. See, for example, [Gee et al. 2009]. 

Before concluding this example, we make a final observation about the sensitivity of the pre

conditioner to the permeability of the medium. As the permeability of the medium and the size 

of the t ime increment changes, the resulting linear systems will have very different character. A 

natural question is whether the proposed preconditioning approach is robust across the entire range 

of behaviors tha t may be encountered. To examine this point, Figure 4.6 shows the sensitivity of the 

iteration count as the permeability of the medium changes (the t ime increment remains fixed). As 

we can see, as the undrained limit is approached the number of i terations grows—suggesting tha t 

the conditioning of the system worsens as the permeability drops. Nevertheless, we see tha t the 

number of required iterations (~35) is bounded and tha t the preconditioner continues to perform 
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Figure 4.7: Geometric configurations for the weak scaling test, partitioned for 16 processors: (left) 
configuration one, which is 4m x 4m x 0.5m; (right) configuration two, which is 16m x lm x 0.5m. 
Each domain has 1,131,588 degrees of freedom. 

well. This robustness with respect to changing permeability regimes is reassuring. 

4.3.2 Parallel Scaling 

We now test the behavior of the preconditioner in a parallel setting. For this example, we perform 

a weak scaling test: the number of elements in the domain grows with the number of processors 

such that the number of elements per processor remains approximately constant. We have also 

examined two geometric configurations for the test (Figure 4.7). Given the simple geometry of 

the two domains, it is easy to define a partitioning that leads to an exact load balancing of the 

number of elements per processor. Since we are more interested in the performance with respect to 

unstructured computations, however, we have used the METIS partitioning package to allocate the 

elements to each processor. The resulting partitioning is much more irregular. 

We test the performance of the preconditioned solver on 1, 4, 9, and 16 processors. The single 

processor version contains 74,052 degrees of freedom, while the 16 processor version has 1,131,588 

degrees of freedom. Instead of the footing load, we have defined a spatially periodic footing traction 

that grows with time as 

w = w0t with w0 = 0.1sin(7rx)sin(7ry) (4.39) 

Units are kPa. The remaining simulation parameters are the same as for the previous serial test. 

In this test we used BICGSTAB as the solver, as we found runtimes to be slightly faster than with 

GMRES. 

The results of the weak scaling tests are presented in Table 4.2. We record both the number 

of iterations to convergence, as well as the total wall time. We should note that these simulations 

were run on a heavily-trafficked cluster, and the total wall time for two identical runs could vary 

quite a bit—often on the order of 20 or 30% and occasionally as high as 100%. We have attempted 
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Table 4.2: Parallel scaling performance of the BP-AMG preconditioner. 

Configuration One 

Configuration Two 

Processors 
Elements 

Degrees of Freedom 

Iterations 
Wall Time (s) 

Iterations 
Wall Time (s) 

1 4 9 16 
16,384 65,536 147,459 262,144 
74,052 287,300 639,812 1,131,588 

9 9 9 9 
4.41 8.30 8.81 10.69 

9 9 10 10 
4.41 8.38 10.66 11.24 

to minimize this effect by averaging over several runs. We believe that the resulting run times are 

representative—they are neither the best nor the worst we encountered. This sensitivity, however, 

is a clear indication that the solution process is communication intensive and that we suffer large 

communication-overhead penalties. 

Examining the results of Table 4.2, the scaling properties of the preconditioner with respect to the 

number of iterations is excellent. The number of iterations remains essentially constant regardless of 

configuration or number of processors. The story with respect to the actual wall time is not so good 

however. The wall time efficiencies for the two 16-processor runs (defined as T\/T\Q) are 41% and 

39%, respectively. Our tests were limited to 16 processors, so we could not investigate the scaling 

behavior beyond this point. Hopefully with additional work we can improve this behavior. There 

is, at least, a tapering of the degradation as one goes to larger numbers of processors. That is, the 

efficiency penalty of going from 1 processor to 4 is worse than going from 4 to 16. Also, the ability 

to solve coupled problems with 1.1 million degrees of freedom in ~11 seconds per iteration may be 

entirely sufficient for many applications. 

4.3.3 Plane-Strain Compression Example 

We now explore the performance of the preconditioning technique with respect to more sophisti

cated material models. This example considers the plane-strain compression of a 50mm x 100mm 

saturated sand specimen. The geometry and boundary conditions are indicated in Figure 4.8. Since 

this is a simple two-dimensional test, the simulation was run on a single processor. 

A critical state plasticity model suitable for dense sands is used for the constitutive behavior of 

the specimen. The formulation of this model is the subject of [Borja and Andrade 2006] and so we 

skip over a detailed presentation here. A key feature of the model, however, is that the strength of 

the material is dependent on the density of the sand with respect to its critical state density. In this 

example, we have introduced a high void ratio zone in the upper left corner. This zone is inherently 
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Figure 4.8: Geometry and boundary conditions for plane-strain compression of a sand specimen. 
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Figure 4.9: Snapshots of cumulative plastic strain—at 25, 50, and 75 s—for the plane-strain compres
sion example. 
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Figure 4.10: Comparison of iteration count using exact and inexact versions of Newton's method on 
the plane-strain compression problem. 

weaker than the rest of the specimen, and upon loading undergoes significant plastic volumetric 

compaction (Figure 4.9). As the sample is compressed further, however, this weak spot triggers 

shear localization along a band within the specimen. The resulting deformations and fluid pressures 

are highly nonlinear and provide a rigorous test of both the linear preconditioning technique and 

the nonlinear outer Newton iteration. 

We recall that at each time step, a certain number of Newton iterations (say, m) must be 

performed to drive the nonlinear residual to zero. To determine the Newton update within each 

iteration, however, a certain number of iterations of a GMRES solver (say, k) are required. Figure 4.10 

provides a detailed account of the nonlinear solution procedure using an inexact Newton method. 

At each time step, the vertical bar is divided into m sub-increments, with the height of each sub-bar 

equal to the solver iterations k required to determine the Newton update. The total height of the bar 

therefore represents the total number of linear GMRES iterations required for each nonlinear solve. 

The key idea behind an inexact Newton method is that using exact solves in early iterations will 

lead to an increase in k but no decrease in m. Far from the solution the linearized approximation 

is a poor representation of the true residual function behavior, and so an exact solve may be no 

better than an inexact solve. Therefore, it only makes sense to increase the linear solver tolerance as 

one approaches the nonlinear solution, where the linear approximation is increasingly meaningful. 

Significant savings can then be achieved by using inexact solves in the early iterations far away 

from the nonlinear solution. As a baseline for comparison, Figure 4.10 indicates the total number of 

GMRES iterations required in each time step using an exact (constant-tolerance) Newton's method. 

The exact method requires 20,988 total GMRES iterations, while the inexact variant shows the same 

quadratic convergence behavior but only requires 13,275 total iterations—a computational savings of 
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37%. The savings are most significant at later times with the onset of the shear localization. At this 

point the problem becomes more nonlinear and more Newton updates are required before the scheme 

converges to a solution. Examining the figure in more detail, we see that the lower bars (representing 

the first few Newton updates) are indeed shorter than the upper bars (representing Newton updates 

close to the nonlinear solution). Furthermore, we see that even for the nonlinear material model 

the preconditioner continues to perform well, keeping the number of GMRES iterations k within each 

Newton iteration relatively small—typically between 10 and 50. 

4.4 Conclusion 

This chapter has focused on two key ideas: (1) developing efficient preconditioning techniques for 

block-structured linear systems, and (2) using inexact Newton methods to improve the performance 

of the nonlinear solver. 

We have proposed a block-structured preconditioning approach which works for both two-field 

{u/p) and three-field (u/p/w) formulations. The approach avoids the inner-solver bottleneck as

sociated with the more classical Schur-reduction method. Furthermore, we have seen that through 

block-preconditioning we can leverage existing black-box preconditioners to their best advantage, 

while still endowing the global preconditioning strategy with knowledge of the block-structured na

ture of our problem. The resulting preconditioner leads to impressive results. On a single-processor, 

a three-dimensional, fully-coupled problem with more than 0.5 million degrees of freedom averaged 

37 seconds per solve. In parallel, a problem with 1.1 million degrees of freedom took 11 seconds per 

solve. 

We have also seen that iterative approaches provide additional savings in the context of the 

nonlinear iteration, because we are able to implement an inexact Newton methodology. For the 

nonlinear test problem, the inexact Newton method took 37% less work than its exact counterpart. 

As far as future work is concerned, our first priority is to address the parallel efficiency of our 

solver—as we believe better scaling can be achieved with additional optimization. Long term, we 

are also interested in nonlinear preconditioning strategies. Just as a linear preconditioner seeks 

to reduce the number of solver iterations in a Krylov method, a nonlinear preconditioner seeks to 

reduce the number of Newton steps needed to drive the nonlinear residual to zero. Given the stiff 

nature of the coupled problems under consideration, any improvement in the nonlinear convergence 

behavior would be of tremendous computational advantage. 
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5 Hydrologically-Driven Slope Instability 

In this chapter, we explore a specific application of the coupled formulation: modeling rainfall-driven 

slope failure. 

5.1 Introduction 

Hydrologically-driven slope instability threatens lives and property worldwide. Examples of large-

scale slope failure all over the world are numerous. Landslides in the San Francisco Bay Area during 

the January 1982 storm resulted in 24 fatalities and millions of dollars in property damage [Brown 

et al. 1984; Smith and Hart 1982]. In January 4, 1982, a 0.22 m storm superimposed on approximately 

0.6 m of pre-storm seasonal rainfall triggered thousands of landslides in the central Coast Ranges 

of California. In Mameyes, Puerto Rico, 1985, rainfall intensity as high as 0.56 m within a 24-hour 

period, with rates as high as 70 mm/hr, triggered debris flows and resulted in 129 deaths [Jibson 

1992]. In Rio Limon, Venezuela, 1987, rainfall as much as 0.174 m in less than five hours triggered 

numerous shallow landslides and debris flows resulting in 210 deaths [Schuster et al. 2002]. In 

Antofagasta, Chile, 1991, rainfall rates as great as 60 mm/hr during a three-hour period triggered 

landslides that resulted in 101 deaths [Van Sint Jan and Talloni 1993]. In Vargas, Venezuela, 1999, a 

heavy rainfall exceeding 0.9 m over a three-day period, with daily values greater than the 1,000 year 

return period [Martinez 2000], triggered thousands of landslides that, along with severe flooding, 

resulted in an estimated 30,000 deaths [USAID 2000]. And in 2006, a heavy rainfall in Guinsaugon, 

Philippines, triggered massive landslides burying an elementary school that had 246 students and 7 

teachers [Lagmay et al. 2006]. 

Despite decades of extensive slope stability model development, the fundamental controls con

necting the hydrologic and geotechnical processes triggering slope failure are still not well quantified. 

This is evident from the La Conchita landslide of January 11, 2005 in southern California that oc

curred without warning. This lack of understanding is a direct result of the simplified physics in 

current models, with the omission of the effect of partial saturation from slope stability calculations. 

It is known that increasing the degree of saturation decreases the capillary pressure, which in turn 

weakens the slope. Moreover, fluid flow generates fractional drag on the soil matrix, thus increasing 

the load that the soil is expected to carry. Despite the expected significant impact, such interplay 

between the increase in saturation accompanied by fluid flow, and increase in potential for slope 

failure is yet to be fully quantified. 

66 
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In this paper, we develop and test a 3D physics-based slope deformation model that couples 

solid deformation with fluid flow in variably-saturated soils. We also assess the potential of the 

coupled model to realistically quantify stresses and deformation necessary to trigger slope failure. 

We emphasize the continuum nature of the modeling approach in that it does not quantify the 

factor of safety of the slope per se, unlike methods based on limit equilibrium concepts. Instead, our 

model predicts the spatial and temporal variations of internal stresses, pore water pressure, degree 

of saturation, and deformation within the slope, as functions of the spatially and temporally varying 

rainfall intensity. Thus, instead of having one scalar quantity called factor of safety, we assess the 

failure potential of a given slope based on the stresses and deformation arising from a prescribed 

forcing function (i.e., rainfall intensity). Stability criteria based on deformation bands are used in 

this paper to assess the potential for slope failure. 

To assess whether the proposed model can successfully integrate important variables in a physics-

based characterization of the field conditions and still obtain a realistic description of slope failure, 

we test the approach with comprehensive and exhaustive data from the Coos Bay experimental 

catchment (CB1) [Ebel et al. 2007a,b]. The highly instrumented site was originally chosen as a 

hillslope-scale "laboratory" for conducting sprinkling experiments aimed at developing and testing 

hydrologic response models. Experimental and field data generated from the site are plentiful, albeit 

most of them pertain to hydrologic response data [Anderson et al. 2002, 1997a,b; Montgomery and 

Dietrich 2002; Montgomery et al. 2002, 1997; Torres et al. 1998]. However, the highly instrumented 

CB1 slope failed as a large debris flow in November 1996, raising some interesting questions related 

to the geotechnical aspects of the site. Given what we know about the topography, hydrologic 

constraints, and the geotechnical outcome at CB1, this case study seems ideal to test the proposed 

continuum slope model. However, it must be noted that despite much effort to constrain the site 

with extensive field instrumentation and investigation, much uncertainty remains, particularly with 

respect to the geotechnical and hydrologic boundary conditions appropriate for the site. Therefore, 

to underscore what we still do not know about CB1, we emphasize that the analysis reported in this 

paper pertains only to a slope similar to CB1, and not to the slope at CB1 itself. 

The slope at CB1 is steep, on the order of 43°. Any critical state soil mechanics model would 

predict an initial stress condition within the slope that lies on the "dilatant side" of the critical state 

line because of the high shear stress to effective-mean-normal stress ratio generated by the steep 

slope condition [Moriguchi et al. 2009]. It would thus be reasonable to characterize the constitutive 

response of the soil skeleton with a Mohr-Coulomb plasticity or similar models, since the compression 

cap is unlikely to be activated particularly when the effective mean normal stress decreases further 

as a result of the loss of suction with increased saturation. A simpler plasticity model such as the 

Mohr-Coulomb model also requires fewer material parameters than any of the more sophisticated 

constitutive models available in the literature (see [Young et al. 2009]). For the soil at CB1, which is 

mostly colluvium, laboratory-determined values of friction angle are available [Schmidt 1994, 1999]. 

Furthermore, representative values of lateral root cohesion in clearcut forests in the Oregon Coast 

Range have been estimated in [Schmidt et al. 2001]. Finally, the thickness of the colluvium at CBl 

is known to be much smaller than the plan area of the mobilized slide, thus making a continuum 
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analysis approach appropriate for this problem. 

5.2 Continuum slope model 

For a solid-water-air mixture the constitutive stress tensor a' (positive for tension) may be defined 

as 

< T ' = < X + ( l - | - ) p l , P = i>W
Pw + (l-lPW)Pa, (5-1) 

where a is the total Cauchy stress tensor, tpw is the degree of saturation, K and Ks are the elastic 

bulk moduli for the solid matrix and solid constituent, respectively, pw and pa are the intrinsic 

pore water and pore air pressures, respectively, and 1 is the Kronecker delta tensor. Borja [Borja 

2006c; Borja and Koliji 2009] demonstrated this expression for the constitutive stress tensor to be 

energy-conjugate to the solid rate of deformation. Under special cases, cr' reduces to Bishop's stress 

when K/Ks = 0 (incompressible solid grains) and ipw = x; to the Skempton [Skempton 1961] and 

Nur-Byerlee [Nur and Byerlee 1971] stress when ipw = 1; and to the Terzaghi [Terzaghi 1943] stress 

when K/Ks = 0 and ipw = 1. The Bishop parameter \ c a n be determined experimentally, and 

the substitution of degree of saturation tpw in lieu of this parameter is a simplified approximation 

derived from the volume averaging over a representative elementary volume (REV). For purposes of 

constitutive modeling of the soil layer, we will use the Bishop stress (K/Ks = 0), with \ = i>w-

Ignoring inertia forces and settingpa equal to the atmospheric pressure (i.e., zero) for near-surface 

condition, balance of linear momentum in the subsurface is given by the equation 

Va + pg^O, p = 4>s
Ps + (j>wpw , (5.2) 

where <ps and </>w are the solid and water volume fractions in the REV, respectively; ps and pw are the 

intrinsic solid and water mass densities (i.e., mass of constituent a per unit volume of constituent 

a), respectively; p is the total mass density of the mixture (ignoring the mass of air phase); and g 

is the gravity acceleration vector. Assuming that water is incompressible, balance of water mass in 

the subsurface takes the form [Borja 2004, 2006c] 

^ r - + <F"v -v + V-qw = ±6b±ee, (5.3) 
at 

where v is the velocity of the solid matrix, qw = <f>w(vw — v) is the relative discharge velocity, 0b 

is the specified rate source/sink, 6e is the rate of water exchange with the surface continuum, and 

d(-)/dt denotes a material time derivative following the solid motion. The relative discharge velocity 

is given by the constitutive equation 

q
w = krwK-v(^+z), (5.4) 

where K is the hydraulic conductivity of the porous medium at complete saturation, krw is the 
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relative permeability that varies with degree of saturation il>w, g is the gravity acceleration constant, 

and z is the vertical coordinate. 

The two independent variables of the formulation are the solid velocity v and pore water pressure 

pw satisfying the two balance laws (5.2) and (5.3), along with the appropriate boundary and initial 

conditions. The solution is fully coupled in the sense that the independent variables are determined 

simultaneously. However, the governing equations must be closed by introducing a pair of constitu

tive laws determined from continuum principles of thermodynamics [Borja 2004, 2006c; Borja and 

Koliji 2009; Houlsby 1979, 1997; Jha and Juanes 2007; Khalili et al. 2004; Nuth and Laloui 2008]: 

(a) a constitutive law relating the Cauchy effective stress rate tensor &' with the strain rate tensor 

V s u for the solid matrix; and (b) a constitutive law relating the suction stress s = pa — pw with 

degree of saturation ipw. The second constitutive law is determined from the imbibition portion of 

the soil-water retention curve for a given soil [Birle et al. 2008; van Genuchten 1980]. 

Continuum principles of thermodynamics suggests an elasto-plastic constitutive framework for 

the soil skeleton given by a yield function of the form [Borja 2004, 2006c; Borja and Koliji 2009; 

Houlsby 1979, 1997] 

F(a',s,pc) = 0, (5.5) 

where pc is a stress-like plastic internal variable that determines the size of the compression cap. The 

suction stress has a positive value for negative pore water pressure (e.g., above the water table), and 

approaches zero as the soil approaches perfect saturation. However, as noted earlier, the compression 

cap is not likely to be activated for steep hillside slope conditions, and thus, this explicit dependence 

of the yield surface on the suction stress may be ignored when using the Mohr-Coulomb or similar 

yield criteria. We emphasize, however, that the yield function still depends on the suction stress 

through the Cauchy effective stress tensor a'. 

Mixed finite element (FE) equations may be readily developed from the variational forms of (5.2) 

and (5.3). The independent variables in the present case are the nodal solid displacement vector d 

and nodal pore water pressure vector p. The coupled FE equations take the form 

-r INT * EXT , 

(5.6) 

GJd + Mp+&p = GEXT, (5.7) 

where F[NT(d) is the internal nodal force vector arising from the effective stress a', G and G are 

the discrete gradient and discrete divergence operators, respectively, which depend on p through 

the degree of saturation in the unsaturated regime, M is a coupling matrix that vanishes at full 

saturation, <fr is an effective conductivity matrix that also depends on the degree of saturation, and 

FEXT and GEXT are prescribed vectors of momentum and fluid supplies. Note that the degree of 

coupling implied by the above equations is more intricate than in the fully saturated case because 

of the presence of xj)™ in many terms. 

The coupled formulation presented above requires mixed finite elements with nodal pressure and 

displacement degrees of freedom. Low-order mixed finite elements, with equal order interpolation 
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F igu re 5 .1: Stabilized low-order mixed finite elements for coupled solid-deformation/fluid-diffusion: 
four-node quadrilateral for 2D (left), and eight-node hexahedral for 3D (right). After White and 
Borja [White and Borja 2008]. 

for displacement and pressure, would be ideal—particularly in 3D when the number of equations can 

increase dramatically. Unfortunately, low-order mixed finite elements create a numerical difficulty in 

tha t in the limit of full saturat ion and either low permeability or fast loading rates, the pore fluid can 

impose near or exact incompressibility on the deformation of the solid matr ix and create spurious 

pore pressure oscillation. To address this difficulty, we use a stabilization scheme proposed by White 

and Borja [White and Borja 2008] based on the concept of Polynomial Pressure Projections ( P P P ) , 

which was proposed in [Bochev and Dohrmann 2006; Bochev et al. 2006; Dohrmann and Bochev 2004] 

to stabilize the Stokes problem. The primary motivation for using stabilization is computat ional 

efficiency: with this technique, it would now be possible to use low-order finite elements, such as 

those shown in Fig. 5.1, without the undesirable pore pressure oscillation tha t otherwise afflicts the 

solution without stabilization. 

5.3 Hydrologic and geotechnical conditions at CB1 

The CB1 experimental catchment [Anderson et al. 2002, 1997a,b; Montgomery and Dietrich 2002; 

Montgomery et al. 2002, 1997; Torres et al. 1998], clearcut in 1987, is located along Met tman Ridge 

approximately 15 km nor th of Coos Bay in the Oregon Coast Range (Fig. 5.2). CB1 is a 51 m 

long (860 m 2 ) unchanneled valley, with a north-facing aspect, t ha t has an average slope of 43° 

(see Fig. 5.3). Three sprinkling experiments were conducted at CB1: experiment # 1 conducted in 

May 1990 at 1.5 m m / h r for 6 days; experiment # 2 conducted in May 1990 at 3.0 m m / h r for 4 

days; and experiment # 3 conducted in May 1992 at 1.7 m m / h r for 7 days. The instrumentat ion 

at CB1 used to characterize the spatial and temporal variability in near-surface hydrologic response 

for the three experiments included an exhaustive grid of rain gauges, piezometers, tensiometers, 

T D R wave guide pairs (for estimating soil-water content), Iysimeters, meteorological sensors (on a 

tower), a tmometers , and weirs. Continuous measurements from rainfall, discharge, and total head 

(from selected piezometers) are available from 1990 through 1996. In November 1996 the CB1 slope 
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Figure 5.2: Location map for CB1 experimental catchment near Coos Bay in the Oregon Coast Range, 
USA. Reproduced from Ebel et al. [Ebel et al. 2007a]. 

failed as a large debris flow. The instrumentat ion at CB1 provides one of the most comprehensive 

hydrological response da ta sets in existence for a steep, deforested catchment tha t has experienced 

slope failure. 

The sediment at CB1 is colluvium, a surficial sediment derived from weathered or fresh bedrock, 

and the soil has no input from aeolian t ransport . The parent rock for the colluvium is an Eocene 

turbidite sandstone from the Tyee and Flournoy formations [Schmidt et al. 2001]. The soils are well 

mixed, nonplastic (plasticity index of 0), gravelly sands [Schmidt 1999]. The geometry and thickness 

of the colluvium are well defined from soil borings. Saturated hydraulic conductivity were determined 

from slug tests, soil-water content and porosity from T D R measurements, and hysteretic capillary 

pressure relationships were established from experiments. Discharge chemistry da ta suggest tha t 

runoff generation occurs primarily from water stored in small, poorly connected pores and fractures 

in the bedrock and saprolite connecting with larger macropores during storms [Montgomery 1991]. 

Tracer da ta (bromide and isotopically-tagged water) suggest tha t the two most important flow paths 

at CB1 are rapid saturated flow through the shallow, fractured bedrock and vertical percolation 

in the vadose zone [Anderson 1995]. Piezometer records show tha t subsurface storm flow in the 

shallow, fractured-rock zone exerts the most significant control on pore pressure development in 

the CB1 colluvium [Montgomery 1991]. Tensiometer da ta indicate t ha t the flux of water through 

the unsatura ted zone provides an additional control on pore pressure development and cannot be 

ignored in slope stability assessment models [Torres 1997]. 

Low confining stress triaxial shear tests demonstrate tha t the colluvium at CB1 is cohesionless 

(consisting of a sandy matrix with a friction angle of 33°) [Schmidt 1994, 1999]. Lateral root 

cohesion in clearcut forests in the Oregon Coast Range was est imated to be uniformly less than 

10 kPa [Schmidt et al. 2001], and may have explained how such a steep slope at CB1 could be 

sustained by the sediment (apart from the capillary tension tha t develops in the vadose zone). Low 
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Figure 5.3: Topographic map for CB1 experimental catchment. Two-dimensional plane strain condi
tion is assumed along section A-A for the coupled solid deformation-fluid flow analysis. Dashed curve B 
delineates the extent of debris flow zone at CB1 from event of November 1996. Larger region C defines 
the boundary of the Ebel et al. [Ebel et al. 2007b] 3D hydrologic FE model. Color bar is elevation in 
meters. 

confining stress triaxial tests gave an internal friction angle of 40° and zero cohesion [Schmidt et al. 

2001]. This is in agreement with other measurements near the site tha t gave internal friction angles 

ranging from 35-44° [Burroughs et al. 1985; Schroeder and Alto 1983: Wu et al. 1988; Yee and Harr 

1977] and zero cohesion [Yee and Harr 1977]. The stress-strain behavior, observed in low confining 

stress triaxial strength testing, was approximately linear for low applied stresses with a distinct-

transition to a non-linear material behavior at axial strains greater than 1-2% [Schmidt 1999]. The 

saturated density of the soil is about 1600 kg/cu.m. [Schmidt et al. 2001] and the bulk density at soil 

water contents of 20-30% is around 1200 kg/cu.m. [Schmidt 1999]. The Van Genuchten [Houston 

et al. 1999; van Genuchten 1980] parameters for the CB1 soil are discussed in the next section. 
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5.4 Hydro-mechanical model 

A challenging aspect of the numerical simulation of a hillslope-scale problem is determining the extent 

of the spatial and temporal discretizations, and what initial and boundary conditions to impose on 

the problem. Ebel et al. [2007b] conducted full 3D fluid flow simulations based on Richards equation 

of variably-saturated flow in the subsurface [Richards 1931] using a comprehensive FE code InHM 

(Integrated Hydrology Model) [VanderKwaak 1999]. They simulated flow over a portion of the 

sediment and fractured bedrock delineated by vertical boundaries on which they believed they could 

reasonably impose a no-flow boundary condition. The spatial extent of their domain description is 

shown in Fig. 5.3. 

For our purposes, the deformation in the bedrock would be too small to be of concern in the 

coupled solid-deformation/fluid-flow analysis, and thus we only represent the sediment domain in our 

simulations. However, there are two important factors that make the present simulations significantly 

more demanding than the fluid flow simulations conducted by Ebel et al. [2007b]: (a) each node in 

the FE mesh is now composed of 3 degrees of freedom (DOFs) in 2D (two displacement and one 

pressure), and 4 DOFs in 3D (three displacement and one pressure); thus the number of equations 

increases very quickly; and (b) the water-retention curve typically exhibits a steep slope near the 

wetting front, necessitating a high-resolution mesh everywhere in the unsaturated zone (since the 

wetting front propagates through the unsaturated zone). 

Considering the difficulty with modeling the exact CB1 conditions due to the uncertainties in 

defining what constitutes a 'sufficient' 3D representation of CB1 and what boundary conditions to 

impose on this model, we believe that it would be more enlightening to consider a much simpler 

2D plane strain representation for now, where the boundary conditions can be constrained more 

easily. To this end, we selected a cross-section passing through the steepest portion of the CB1 

catchment, shown as section A-A in Fig. 5.3, and constructed the FE mesh shown in Fig. 5.4. This 

2D representation of the slope at CB1 is conservative in the sense that out-of-plane strengths from 

3D effect emanating from lateral root cohesion, friction, etc. has been ignored. The mesh shown in 

Fig. 5.4 has 20,000 nodes and 18,981 (stabilized) quadrilateral mixed finite elements, resulting in a 

total of 60,000 DOFs. 

Figures 5.5 and 5.6 show the suction/saturation and saturation/relative permeability relation

ships used in the simulations. The degree of saturation tpw is determined from the van Genuchten 

[1980] model as 

(5.8) 

The model contains four parameters: ip\ is the residual water saturation, ip2 is the maximum water 

saturation, sa is a scaling pressure, and n and m are empirical constants defining the shape of the 

saturation curve. The constants n and m are not independent, but are rather related to one another 

1>W(S) = ^1 + (02 " ^ l ) *Hz). 
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Figure 5.4: Finite element mesh for problem simulations (cf. section A-A in Fig. 5.3). 

as m = (n — l ) /n . The water phase relative permeability is similarly defined as 

krw{9) = 01/2 
m i 2 

i _ ( i-6i1 / m)m] , e 
1p2 - Vl 

(5.9) 

The parameter values used in this work are given in Table 5.1. In order to calibrate the model, 

we have used the in situ retention curves as measured by Torres et al. [Torres et al. 1998] for the CB1 

site. We ignored hysteretic effects, and have only used the wetting measurements for calibration. 

The chosen values are nearly the same as those used by Ebel et al. [2007b] in their hydrologic 

model except for a slight adjustment in the scaling pressure. The steep geometry of the saturation 

and relative permeability relationships proved to be numerically challenging on the relatively coarse 

mesh, and a slight flattening of the curve improved the robustness of the model. 
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Figure 5.5: Soil-water retention curve data [Torres et al. 1998] and van Genuchten curves used by 
Ebel et al. [2007b] for hydrologic simulations. Our saturation-suction curve is very close to the Ebel 
et al. [2007b] wetting curve. 
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Figure 5.6: Variation of relative permeability with degree of saturation. 



www.manaraa.com

HYDROLOGICALLY-DRIVEN SLOPE INSTABILITY | 76 

Table 5.1: Material parameters. 

Intrinsic permeability 
Fluid viscosity 

Residual saturation 
Maximum saturation 
Shape constant 
Scaling pressure 

Bulk Modulus 
Poisson Ratio 
Cohesion 
Friction angle 
Dilatancy angle 

Porosity 
Fluid density 
Solid density 

k 

P-

V>i 
V>2 
n 
sa 

K 
V 

c 

4> 
* 

<PS 

Pw 
Ps 

3.4 x 1CT11 

1.0 x 10-6 

0.32 
1.00 
3.00 
0.40 

50 
0.25 
0-10 

33-40 
« 2 5 

0.50 
1.0 
2.2 

m2 

kPa-s 

kPa 

MPa 

kPa 
deg. 
deg. 

Mg/n 
Mg/n 

The elastic parameters K and v are typical for sand/gravel mixture subjected to a confining 

pressure comparable to those prevailing in the CB1 sediment [Lambe and Whitman 1969]. The 

elastic parameters influence the displacements of the sediment but have little effect on the mechanism 

of failure, which is determined largely by the plasticity model. The parameters of the Mohr-Coulomb 

plasticity model are the cohesion c, friction angle 4>, and dilatancy angle ip, and their range of values 

is also summarized in Table 5.1. 

5.5 Results 

In general, failure mechanisms generated by the 2D slope model are complex and very much de

pendent on the imposed flow boundary conditions. Furthermore, the timing and location of initial 

failure are dependent on the intensity of rainfall and local flow conditions, such as the presence of 

a source or sink. In this section we summarize the results of numerical simulations on the 2D slope 

model. The section is divided into two parts. In the first part we show the impact of flow bound

ary conditions on the resulting deformation and failure patterns. In the second part we conduct 

parametric studies to investigate the sensitivity of the calculated deformation and failure patterns 

to variation in material parameters. 
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5.5.1 Impact of flow boundary conditions 

We consider three fluid flow boundary conditions—Case A: a zero fluid pressure is prescribed on the 

slope surface; Case B: rainfall infiltration is prescribed on the slope surface in the form of fluid flux; 

and Case C: fluid infiltration into the sediment is prescribed on the interface between the sediment 

and fractured bedrock. The material parameters are summarized in Table 5.1. For the present 

simulations, baseline values of c = 4 kPa for cohesion, <f> = 40° for friction angle, and ip = 25° for 

dilatancy angle were used. 

In all the simulations the sediment was assumed fixed to the bedrock, and any relative sliding 

between the sediment and bedrock may only take place in the form of plastic deformation on the 

sediment. The slope is very thin compared to its length, so the displacement boundary conditions 

on the top and bottom ends of the slope are expected to play a very minor role on the calculated 

mechanical responses. Thus, in the present simulations we simply assumed the top and bottom ends 

of the slope to be fixed to the support. However, initial conditions do play a significant role on the 

hydro-mechanical responses, particularly the initial value of negative pore water pressure within the 

sediment. Based on the hydrologic simulations of Ebel et al. [2007b], we assumed an initial pore 

water pressure of —1.5 kPa throughout the sediment. Gravity load was turned on along with this 

initial pore water pressure to obtain the initial effective stresses, after which the nodal displacements 

were reset to zero. A standard 2 x 2 Gauss integration rule was used for the stabilized quadrilateral 

mixed elements, and a backward implicit scheme was used for time integration. 

For Case A, we assumed the pore water pressure on the slope surface to ramp up linearly from 

— 1.5 kPa at t = 0, to 0 kPa at t = 3 hr (Dirichlet boundary condition), after which the pressure 

was held fixed at 0 kPa. All other fluid flow boundaries were assumed to be impermeable (Neumann 

boundary condition). This represents a rainfall heavy enough to saturate the slope surface within a 

period of three hours and keep it saturated thereafter. Figure 5.7 summarizes the calculated hydro-

mechanical responses at the inception of primary and secondary failure mechanisms within the 

slope. The general mechanism is as follows. As the sediment becomes saturated, local plastic zones 

develop on the base and stretch the slope segments unevenly. Eventually, plastic zones curve upwards 

due to local stretching of the slope segments and emerge on the ground surface approximately at 

coordinates x = 43 m and x = 50 m. The resulting slope failure mechanism is similar to multiple slide 

block described by Varnes [Varnes 1978]. Drained bifurcation analyses based on the Rudnicki and 

Rice [Rudnicki and Rice 1975] procedure allowed the calculation of localization function [Andrade 

and Borja 2006, 2007; Borja 2006a,b,c; Runesson et al. 1991], showing negative values. This suggests 

that a shear band-type bifurcation is likely to occur where the plastic deformation concentrates. 

On a related note Borja [2004] demonstrated that drained shear-band bifurcation is likely to be 

more critical than undrained bifurcation in partially saturated dilatant frictional materials. At the 

inception of initial and secondary failure mechanisms, the critical slope segment is nearly saturated, 

and the pore water pressure is approximately hydrostatic relative to the slope surface. 

For Case B, we specified a seepage infiltration of 15 mm/hr on the slope surface (Neumann 

boundary condition) while maintaining the same flow boundary conditions on the other faces as 
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Figure 5.7: Multiple slide block mechanism in a steep hillside slope subjected to rising pore water 
pressure boundary condition from —1.5 kPa up to 0 kPa in 3 hr on slope surface. 

in Case A (an initial all-Neumann set of flow boundary conditions). This eventually caused the 

bottom end of the slope to become saturated and the pore water pressure there to rise indefinitely. 

Since the pore water pressure cannot exceed zero on the slope surface, the boundary condition 

switched from a seepage type (Neumann) to a pressure-type (Dirichlet) on the slope surface where 

the pore water pressure reached zero. Figure 5.8 shows the calculated hydro-mechanical responses. 

The failure mechanism is similar to a multiple block type as in Case A, but note that the new 

boundary conditions have mobilized failure within a different segment of the slope (at x = 16 m 

and x = 25 m). The localization function also shows a propensity of the sediment to develop shear 

strain localization where plastic deformation concentrates. Furthermore, even though the sediment 

is saturated all throughout the depth near the bottom end of the slope, initial failure still developed 

upslope, at x = 25 m where the sediment is still partially saturated. This suggests that the sediment 

does not have to be completely saturated to experience failure by plastic deformation and shear 

strain localization. 

For Case C, we also assumed an initial all-Neumann boundary condition with zero flux on all 
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Figure 5.8: Multiple slide block mechanism in a steep hillside slope subjected to rainfall infiltration 
of 15 mm/hr on slope surface. 

surface boundaries except over a finite segment between i = 12 m to a; = 18 m on the sediment-

bedrock interface. Thus, this segment of the fractured bedrock was assumed to be a fluid source. 

There has been much speculation about the fluid flux from the fractured bedrock at CB1. Whereas its 

importance on the hydrologic aspects has been elucidated from previous fluid flow simulations [Ebel 

et al. 2007b], its impact on the sediment mechanical responses is poorly understood. To isolate the 

effect of fluid infiltration from the fractured bedrock, we assumed the top surface to be a no-flux 

boundary unless the pressure plume reaches it, at which point it switches to a p = 0 face. Figure 5.9 

suggests that with only fluid influx from the fractured bedrock it takes a large amount of seepage 

to build up enough pressure to fail the slope. Note that the pressure plume extends all the way 

to the surface, implying that upward seepage would be observed at the surface. It thus appears 

that upward seepage is unlikely to be the primary failure mechanism for a slope similar to CB1. 

However, upward seepage could certainly aggravate a slope that has already been weakened by other 

infiltration. 
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Figure 5.9: Failure mechanism in a steep hillside slope subjected to upward seepage on the base of 
the slope. 

5.5.2 Impact of strength parameters variation on failure mechanism 

The comprehensive hydrologic FE simulations conducted by Ebel et al. [2007b] highlighted the 

importance of being able to constrain the parameters of the fluid flow model in general, and the 

soil-water retention curve in particular, for a realistic prediction of the field responses at CB1. In 

this section, we address the implications of uncertain strength parameters on the predicted failure 

mechanism and the timing of such mechanism for a steep hillside slope similar to CB1. Fortunately, 

the perfectly plastic Mohr-Coulomb model has only three strength parameters: cohesion c, friction 

angle <f>, and dilatancy angle ip, and thus the parametric studies can be conducted with relative ease. 

Any unknown hardening or softening responses may be viewed as part of the uncertainties in these 

strength parameters. 

Figure 5.10 shows the impact of an uncertain cohesion on the failure mechanism for the 2D slope 

model. The friction and dilatancy angles were fixed at 40° and 25°, respectively, and the loading 

condition was defined by Case B (prescribed seepage on the slope face). We recall that at the CB1 
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Figure 5.10: Variation of failure mechanism and timing of failure with cohesion. 
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Figure 5.11: Variation of failure mechanism and timing of failure with friction angle. 

site the parameter c was derived mainly from lateral root cohesion, which could vary in space and 

time. For example, as the sediment is stretched the root strength could be mobilized, resulting in 

an increase in c, but it could also subsequently decrease when the roots are pulled from the host 

sediment. The figure shows the failure mechanisms and timing of failure at cohesion of 2, 4, and 

8 kPa. At 2 kPa the slope failed for the initial configuration, just under its own self-weight. The 

observed trends are what one would expect: larger cohesion delays the timing of failure. However, 

at c = 8 kPa only a single plastic zone emerged on the slope face, not multiple ones. 

Figure 5.11 shows the impact of an uncertain friction angle <j> on the failure mechanism for the 2D 

slope model. In the simulations c was fixed at 4 kPa, and the loading condition was again defined by 

Case B. For the two values of friction angle tested (<f> = 30° and 40°) the initial plastic zone emerged 

on the slope face at approximately the same location (at x = 25 m). However, for (f> = 30° the 

secondary failure zone developed at an earlier time and above the initial failure zone (at x = 30 m), 

whereas for <f> = 40° the secondary plastic zone emerged on the slope face at a later time and below 

the initial failure zone (at x = 17 m). 
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Figure 5.12: Variation of failure mechanism and timing of failure with dilatancy angle. 

Finally, we consider the effect of the dilatancy angle on the predicted failure kinematics. Fig

ure 5.12 compares the plastic strain distribution in the slope using two dilatancy angles, 10° and 25°, 

while the friction angle remains fixed at the baseline value of 40°. In both cases, a failure surface 

extending to slope surface is observed at approximately x = 25 m, suggesting that this failure mode 

is insensitive to dilatancy. In the low dilatancy angle simulation, however, the secondary failure 

in the x = 16 m region is suppressed. There is some indication that with additional deformation 

a secondary failure may initiate at this point, but the timing of the two would not be as closely 

linked as in the high dilatancy angle case. Close examination of the plastic strain contours in both 

simulations also indicates that the plastic zone in the low dilatancy case is less "diffuse" than in the 

high dilatancy case. 
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5.6 Summary and conclusions 

We have presented a continuum physics-based framework for analysis of coupled solid deformation-

fluid flow processes in partially saturated earthen slopes. The formulation for constitutive modeling 

of the unsaturated sediment is based on the use of an effective stress measure that represents the 

sole stress state variable responsible for deforming the solid skeleton, and on direct use of suction 

in the constitutive relations [Borja 2004, 2006c; Borja and Koliji 2009; Koliji et al. 2008]. Other 

alternative approaches exist in which different pairs of stress state variables are chosen instead of a 

single effective stress, such as the net stress and matric suction [Alonso et al. 1990; Fredlund and 

Morgenstern 1977; Gallipoli et al. 2003; Vaunat et al. 2000; Wheeler et al. 2002]. However, the 

effective stress used in this work appears to have an advantage in terms of FE implementation since 

the coupled formulation follows exactly the same lines as those developed for the fully saturated 

case. This implies that stabilized low-order mixed FE elements can be used just as well for the 

unsaturated case. 

We have used the coupled continuum FE model to analyze the deformation and stability of a 

steep hillside slope similar to the CB1 site. Despite the simplified 2D plane strain representation 

adopted by the model, the predicted failure mechanisms are complex and nowhere near what one 

would normally obtain from an infinite slope assumption. For a steep hillside slope similar to CB1, 

it appears that failure mechanism would likely initiate in the form multiple failure blocks, which 

could transform into a debris flow similar to what was observed at the CB1 site during the November 

1996 event. An obvious advantage of the proposed continuum modeling approach lies in its ability to 

integrate important hydro-mechanical processes responsible for triggering rainfall-induced movement 

of earthen slopes, including increased saturation, fluid flow, and inelastic solid deformation. Work 

is currently underway to incorporate 3D effects into the numerical model. 
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6 Conclusion 

As we have seen, in many applications it is necessary to strongly couple the hydrologic and geome-

chanical responses in order to accurately predict system behavior. Numerical simulations provide 

a natural tool for these investigations, and provide a powerful complement to theory, experiment, 

and field observation. Unfortunately, there has been hesitancy to adopt fully-coupled formulations 

in practice. Much of this hesitancy stems from the expense of performing these simulations. Even 

with today's growing computer power, the numerical challenges associated with these problems are 

sufficiently complex that they defy "brute force" solution methods. Rather, we need scalable, effi

cient approaches that use modern computing platforms to their best advantage. Chapters 3 and 4 

of this thesis have been aimed at precisely this issue. 

First, we examined the inherent stability restrictions that are present in mixed finite element 

formulations. Standard, stable discretizations that satisfy these restrictions can be very expensive, 

leading to algebraic problems with many more unknowns than is likely justified by the convergence 

behavior of the approximation. To deal with this fact, we have proposed a stabilized finite element 

method that circumvents these restrictions and allows for the successful use of equal-order linear 

interpolation for all field variables. For very large, three-dimensional problems, the resulting system 

matrices will have approximately one-sixth as many degrees of freedom as their stable counterparts. 

The stabilized scheme also has several appealing computational properties that set it apart from 

other approaches: it only requires standard shape function information, is entirely element local, 

preserves the original symmetry and sparsity patterns of the system matrix, and is computationally 

cheap to apply. Through several numerical examples we have demonstrated that the method shows 

good convergence properties while being significantly more tractable than standard, unequal-order 

approaches. 

Even with stabilization, however, coupled formulations lead to algebraic systems that can be on 

the order of hundreds of thousands to millions of degrees of freedom. Furthermore, these problems 

are nonlinear, stiff, and extremely ill-conditioned. We have demonstrated that despite these diffi

culties efficient solution procedures can be designed. For the linear solver, we use memory-efficient 

Krylov subspace methods like GMRES or BICGSTAB. To deal with ill-conditioning, we have proposed 

a block-structured preconditioning approach. This block approach provides a middle ground be

tween "physics-based" and "algebraic" preconditioners. Algebraic preconditioners work very well 

for single-physics applications, and many linear algebra packages provide high-performance imple

mentations. Unfortunately, since they have no knowledge of the coupled nature of multiphysics 
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problems, they typically perform poorly in these situations. The block-preconditioning approach 

directly addresses this issue, by building the preconditioner through block-decompositions of the 

system matrices. In doing so, we endow the preconditioner with physics-based knowledge about 

the coupled system, but also decompose the problem into simpler pieces for which algebraic precon-

ditioners work extremely well. When combined with Incomplete LU (ILU) or Algebraic Multigrid 

(AMG) sub-preconditioners, we have demonstrated fast, scalable performance of both serial and 

parallel processors. With additional work, we also believe we can minimize the communication 

overhead in a parallel setting, and achieve better parallel efficiency. We have also examined how 

the iterative solver can provide additional computational savings in the context of inexact Newton 

methods, automatically tuning the amount of work performed based on the expected increase in 

accuracy it will provide. 

As far as future numerical work is concerned, we have only indirectly addressed the inherent 

stiffness in the nonlinear problems we have been solving. These nonlinearities can lead to many 

Newton updates before quadratic convergence is observed. Furthermore, several robustness checks 

are required to ensure divergence does not take place. An interesting problem to consider is that 

of "nonlinear preconditioning." Just as a linear preconditioner reduces the number of linear solver 

iterations, nonlinear preconditioning seeks to reduce the number of nonlinear Newton iterations. 

By reducing and balancing the nonlinearities in the problem, significant speed and robustness im

provements can be obtained. As another avenue of research with respect to stabilization, we note 

other physical mechanisms besides divergence constraints can lead to oscillatory solutions. These 

can include oscillations around the self-sharpening wetting fronts that may appear in modeling un

saturated fluid flow. We would like to explore the application of advective stabilization techniques 

to these numerical difficulties. 

In the last chapter, we have used our physics-based model to examine a critical application: 

hydrologically-driven landslides. As a motivating problem, we have used the 1996 landslide at the 

CB1 experimental catchment. In order to limit the number of uncertainties in the model, however, 

we have implemented a highly-simplified, two-dimensional approximation. We have explored the 

sensitivity of the failure kinematics to changes in the material parameters, which are not as well 

constrained as the hydrologic parameters at the CB1 site. Even the simple model indicates that the 

failure kinematics are quite complex, involving a sliding block mechanism in which multiple failure 

surfaces interact. 

Of course, the work presented in this dissertation is by no means the end of the story. With 

the knowledge obtained about material uncertainties from the 2D analyses, we intend to examine 

the effect of the 3D geometry on the expected failure mechanisms. Also, the hydrologic modeling 

we have used to this point has been simplified—we assume, for example, that the rainfall can be 

modeled as a constant flux, rather than specifying the actual time variation as measured during the 

failure storm. The boundary and initial conditions were also simplified. At the actual CB1 site, 

hydrologic mechanisms associated with sapprolite layers and the fractured bedrock are complex. 

These additional features may be essential to modeling the flow and pressure distribution in a 

realistic way. Fortunately, sprinkling experiments and other field observations provide a wealth of 
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data to test a more sophisticated hydrologic model. 

The basic premise of this dissertation is that fully-coupled simulations should become a standard 

analysis technique, not one that is put off as too complex or expensive to provide meaningful insight. 

Our hope is that the work presented here moves us closer to this goal. 
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